Cross-Modal Contrastive Learning Network for Few-Shot Action Recognition

过度拟合 判别式 计算机科学 人工智能 特征(语言学) 模式识别(心理学) 背景(考古学) 特征学习 班级(哲学) 机器学习 特征提取 情态动词 卷积神经网络 辍学(神经网络) 人工神经网络 古生物学 语言学 哲学 化学 高分子化学 生物
作者
Xiao Wang,Yan Yan,Hai‐Miao Hu,Bo Li,Hanzi Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1257-1271 被引量:6
标识
DOI:10.1109/tip.2024.3354104
摘要

Few-shot action recognition aims to recognize new unseen categories with only a few labeled samples of each class. However, it still suffers from the limitation of inadequate data, which easily leads to the overfitting and low-generalization problems. Therefore, we propose a cross-modal contrastive learning network (CCLN), consisting of an adversarial branch and a contrastive branch, to perform effective few-shot action recognition. In the adversarial branch, we elaborately design a prototypical generative adversarial network (PGAN) to obtain synthesized samples for increasing training samples, which can mitigate the data scarcity problem and thereby alleviate the overfitting problem. When the training samples are limited, the obtained visual features are usually suboptimal for video understanding as they lack discriminative information. To address this issue, in the contrastive branch, we propose a cross-modal contrastive learning module (CCLM) to obtain discriminative feature representations of samples with the help of semantic information, which can enable the network to enhance the feature learning ability at the class-level. Moreover, since videos contain crucial sequences and ordering information, thus we introduce a spatial-temporal enhancement module (SEM) to model the spatial context within video frames and the temporal context across video frames. The experimental results show that the proposed CCLN outperforms the state-of-the-art few-shot action recognition methods on four challenging benchmarks, including Kinetics, UCF101, HMDB51 and SSv2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助ErinRRR采纳,获得10
刚刚
1秒前
sdl发布了新的文献求助10
1秒前
feng1235发布了新的文献求助10
1秒前
董卓林完成签到,获得积分10
2秒前
2秒前
3秒前
香蕉觅云应助村雨采纳,获得10
3秒前
CipherSage应助TCB采纳,获得10
4秒前
英雷完成签到,获得积分10
4秒前
5秒前
开心安莲应助一人一般采纳,获得10
6秒前
lilac完成签到,获得积分10
7秒前
Ruth发布了新的文献求助10
8秒前
10秒前
10秒前
10秒前
燕燕于飞发布了新的文献求助10
11秒前
司马雨泽发布了新的文献求助10
11秒前
13秒前
蔚亭完成签到,获得积分10
13秒前
13秒前
皮夏寒发布了新的文献求助10
14秒前
honhu753发布了新的文献求助20
14秒前
柯友卉完成签到 ,获得积分10
14秒前
小二郎应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
现代代芹应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得30
15秒前
Jasper应助科研通管家采纳,获得10
16秒前
MchemG应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
江枫渔火发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828398
求助须知:如何正确求助?哪些是违规求助? 3370744
关于积分的说明 10464568
捐赠科研通 3090632
什么是DOI,文献DOI怎么找? 1700487
邀请新用户注册赠送积分活动 817859
科研通“疑难数据库(出版商)”最低求助积分说明 770566