Blockchain-Based Federated Learning for Securing Internet of Things: A Comprehensive Survey

计算机科学 块链 可扩展性 计算机安全 物联网 多样性(控制论) 分析 数据科学 人工智能 数据库
作者
Wael Issa,Nour Moustafa,Benjamin Turnbull,Nasrin Sohrabi,Zahir Tari
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (9): 1-43 被引量:152
标识
DOI:10.1145/3560816
摘要

The Internet of Things (IoT) ecosystem connects physical devices to the internet, offering significant advantages in agility, responsiveness, and potential environmental benefits. The number and variety of IoT devices are sharply increasing, and as they do, they generate significant data sources. Deep learning (DL) algorithms are increasingly integrated into IoT applications to learn and infer patterns and make intelligent decisions. However, current IoT paradigms rely on centralized storage and computing to operate the DL algorithms. This key central component can potentially cause issues in scalability, security threats, and privacy breaches. Federated learning (FL) has emerged as a new paradigm for DL algorithms to preserve data privacy. Although FL helps reduce privacy leakage by avoiding transferring client data, it still has many challenges related to models’ vulnerabilities and attacks. With the emergence of blockchain and smart contracts, the utilization of these technologies has the potential to safeguard FL across IoT ecosystems. This study aims to review blockchain-based FL methods for securing IoT systems holistically. It presents the current state of research in blockchain, how it can be applied to FL approaches, current IoT security issues, and responses to outline the need to use emerging approaches toward the security and privacy of IoT ecosystems. It also focuses on IoT data analytics from a security perspective and the open research questions. It also provides a thorough literature review of blockchain-based FL approaches for IoT applications. Finally, the challenges and risks associated with integrating blockchain and FL in IoT are discussed to be considered in future works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘发布了新的文献求助10
1秒前
乐乐应助刻苦嫣采纳,获得10
2秒前
3秒前
落后从阳发布了新的文献求助10
3秒前
4秒前
如意的靳完成签到,获得积分10
4秒前
陈华标发布了新的文献求助10
4秒前
Echo发布了新的文献求助20
5秒前
5秒前
5秒前
浮游应助tx采纳,获得10
6秒前
7秒前
Kevin完成签到,获得积分10
7秒前
刘子琪发布了新的文献求助30
8秒前
五氧化二磷完成签到,获得积分10
8秒前
9秒前
爱喝酸奶的天真完成签到,获得积分10
11秒前
Pan完成签到,获得积分10
12秒前
冷静映安完成签到,获得积分10
12秒前
天天快乐应助温柔衬衫采纳,获得10
12秒前
舒畅完成签到,获得积分10
13秒前
陶醉迎彤发布了新的文献求助10
14秒前
魔道祖师完成签到,获得积分10
14秒前
ZhangR完成签到,获得积分10
15秒前
浮游应助dongfang采纳,获得10
18秒前
19秒前
21秒前
温暖的复天应助六五采纳,获得10
21秒前
Egoist完成签到,获得积分10
22秒前
孙文杰完成签到 ,获得积分10
23秒前
24秒前
24秒前
24秒前
张Z3210_发布了新的文献求助10
25秒前
伍姝慧关注了科研通微信公众号
25秒前
闪闪小帆完成签到,获得积分10
25秒前
犹豫山菡完成签到,获得积分10
25秒前
26秒前
可爱的函函应助落后金鑫采纳,获得10
27秒前
Jasper应助Jadon采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307204
求助须知:如何正确求助?哪些是违规求助? 4452932
关于积分的说明 13855643
捐赠科研通 4340527
什么是DOI,文献DOI怎么找? 2383254
邀请新用户注册赠送积分活动 1378068
关于科研通互助平台的介绍 1345895