Blockchain-Based Federated Learning for Securing Internet of Things: A Comprehensive Survey

计算机科学 块链 可扩展性 计算机安全 物联网 多样性(控制论) 分析 数据科学 人工智能 数据库
作者
Wael Issa,Nour Moustafa,Benjamin Turnbull,Nasrin Sohrabi,Zahir Tari
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (9): 1-43 被引量:152
标识
DOI:10.1145/3560816
摘要

The Internet of Things (IoT) ecosystem connects physical devices to the internet, offering significant advantages in agility, responsiveness, and potential environmental benefits. The number and variety of IoT devices are sharply increasing, and as they do, they generate significant data sources. Deep learning (DL) algorithms are increasingly integrated into IoT applications to learn and infer patterns and make intelligent decisions. However, current IoT paradigms rely on centralized storage and computing to operate the DL algorithms. This key central component can potentially cause issues in scalability, security threats, and privacy breaches. Federated learning (FL) has emerged as a new paradigm for DL algorithms to preserve data privacy. Although FL helps reduce privacy leakage by avoiding transferring client data, it still has many challenges related to models’ vulnerabilities and attacks. With the emergence of blockchain and smart contracts, the utilization of these technologies has the potential to safeguard FL across IoT ecosystems. This study aims to review blockchain-based FL methods for securing IoT systems holistically. It presents the current state of research in blockchain, how it can be applied to FL approaches, current IoT security issues, and responses to outline the need to use emerging approaches toward the security and privacy of IoT ecosystems. It also focuses on IoT data analytics from a security perspective and the open research questions. It also provides a thorough literature review of blockchain-based FL approaches for IoT applications. Finally, the challenges and risks associated with integrating blockchain and FL in IoT are discussed to be considered in future works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天完成签到,获得积分10
刚刚
万能图书馆应助林林采纳,获得10
2秒前
霸气的梦露完成签到,获得积分10
3秒前
科研通AI2S应助memory采纳,获得10
4秒前
ttx发布了新的文献求助10
4秒前
5秒前
6秒前
jiangcai完成签到,获得积分10
9秒前
orixero应助Helium采纳,获得10
10秒前
11秒前
Common完成签到,获得积分10
12秒前
小小雨泪发布了新的文献求助10
12秒前
zp6666tql完成签到 ,获得积分10
13秒前
謃河鷺起完成签到,获得积分10
14秒前
yyy发布了新的文献求助30
15秒前
会飞的扁担完成签到,获得积分10
16秒前
鱼饼完成签到 ,获得积分10
17秒前
DianaLee完成签到 ,获得积分10
18秒前
20秒前
20秒前
南庭完成签到,获得积分10
20秒前
乔一乔完成签到,获得积分10
21秒前
22秒前
25秒前
柳叶刀的终极传人完成签到,获得积分10
29秒前
JamesPei应助Shelley采纳,获得10
29秒前
30秒前
俭朴映阳发布了新的文献求助10
33秒前
37秒前
yinshan完成签到 ,获得积分10
38秒前
留白完成签到 ,获得积分10
42秒前
何浏亮发布了新的文献求助10
42秒前
42秒前
46秒前
科研顺利完成签到 ,获得积分10
46秒前
47秒前
羊羽完成签到,获得积分10
48秒前
俭朴映阳完成签到,获得积分10
49秒前
52秒前
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779522
求助须知:如何正确求助?哪些是违规求助? 3325020
关于积分的说明 10220898
捐赠科研通 3040147
什么是DOI,文献DOI怎么找? 1668632
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522