Adaptive Active Positioning of Camellia oleifera Fruit Picking Points: Classical Image Processing and YOLOv7 Fusion Algorithm

人工智能 油茶 质心 图像处理 计算机视觉 计算机科学 数学 模式识别(心理学) 园艺 图像(数学) 生物
作者
Yunhe Zhou,Yunchao Tang,Xiangjun Zou,Mingliang Wu,Wei Tang,Meng Fan,Yunqi Zhang,Hanwen Kang
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:12 (24): 12959-12959 被引量:67
标识
DOI:10.3390/app122412959
摘要

Camellia oleifera fruits are randomly distributed in an orchard, and the fruits are easily blocked or covered by leaves. In addition, the colors of leaves and fruits are alike, and flowers and fruits grow at the same time, presenting many ambiguities. The large shock force will cause flowers to fall and affect the yield. As a result, accurate positioning becomes a difficult problem for robot picking. Therefore, studying target recognition and localization of Camellia oleifera fruits in complex environments has many difficulties. In this paper, a fusion method of deep learning based on visual perception and image processing is proposed to adaptively and actively locate fruit recognition and picking points for Camellia oleifera fruits. First, to adapt to the target classification and recognition of complex scenes in the field, the parameters of the You Only Live Once v7 (YOLOv7) model were optimized and selected to achieve Camellia oleifera fruits’ detection and determine the center point of the fruit recognition frame. Then, image processing and a geometric algorithm are used to process the image, segment, and determine the morphology of the fruit, extract the centroid of the outline of Camellia oleifera fruit, and then analyze the position deviation of its centroid point and the center point in the YOLO recognition frame. The frontlighting, backlight, partial occlusion, and other test conditions for the perceptual recognition processing were validated with several experiments. The results demonstrate that the precision of YOLOv7 is close to that of YOLOv5s, and the mean average precision of YOLOv7 is higher than that of YOLOv5s. For some occluded Camellia oleifera fruits, the YOLOv7 algorithm is better than the YOLOv5s algorithm, which improves the detection accuracy of Camellia oleifera fruits. The contour of Camellia oleifera fruits can be extracted entirely via image processing. The average position deviation between the centroid point of the image extraction and the center point of the YOLO recognition frame is 2.86 pixels; thus, the center point of the YOLO recognition frame is approximately considered to be consistent with the centroid point of the image extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
elysia完成签到,获得积分10
2秒前
乐乐应助苏嘉采纳,获得10
3秒前
xxxx完成签到,获得积分10
4秒前
Khr1stINK完成签到,获得积分10
5秒前
自然怀梦完成签到,获得积分10
6秒前
负责紊完成签到,获得积分10
8秒前
CodeCraft应助亿点快乐采纳,获得10
8秒前
kkkkk完成签到,获得积分10
9秒前
飞翔的梦完成签到,获得积分10
9秒前
WSY完成签到,获得积分10
9秒前
老王完成签到,获得积分10
11秒前
Hhl完成签到,获得积分10
11秒前
12秒前
15秒前
和春住完成签到,获得积分10
15秒前
16秒前
CAOHOU应助干净的小虾米采纳,获得10
16秒前
是猪不是猫完成签到,获得积分10
16秒前
17秒前
科研通AI2S应助song采纳,获得10
17秒前
123123完成签到 ,获得积分10
17秒前
20秒前
luoshi94发布了新的文献求助10
20秒前
Betty完成签到,获得积分10
20秒前
亿点快乐发布了新的文献求助10
22秒前
Hoper完成签到,获得积分10
22秒前
23秒前
灵巧雨寒发布了新的文献求助10
23秒前
Neo完成签到,获得积分10
24秒前
25秒前
luoshi94完成签到,获得积分10
27秒前
哈哈发布了新的文献求助10
27秒前
小晖晖完成签到,获得积分10
28秒前
28秒前
shor0414完成签到 ,获得积分10
28秒前
白鹭立雪发布了新的文献求助10
30秒前
kangkangkyt完成签到,获得积分10
34秒前
哈哈完成签到,获得积分20
34秒前
罐罐儿完成签到,获得积分0
35秒前
潘宋完成签到,获得积分10
37秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4043999
求助须知:如何正确求助?哪些是违规求助? 3581800
关于积分的说明 11384581
捐赠科研通 3308977
什么是DOI,文献DOI怎么找? 1821276
邀请新用户注册赠送积分活动 893627
科研通“疑难数据库(出版商)”最低求助积分说明 815791