人工智能
计算机科学
聚类分析
深度学习
机器学习
模式识别(心理学)
作者
Jianlong Wu,Zihan Li,Wei Sun,Jianhua Yin,Liqiang Nie,Zhouchen Lin
标识
DOI:10.1109/tpami.2025.3588239
摘要
Recently, deep clustering methods have achieved remarkable results compared to traditional clustering approaches. However, its performance remains constrained by the absence of annotations. A thought-provoking observation is that there is still a significant gap between deep clustering and semi-supervised classification methods. Even with only a few labeled samples, the accuracy of semi-supervised learning is much higher than that of clustering. Given that we can annotate a small number of samples in a certain unsupervised way, the clustering task can be naturally transformed into a semi-supervised setting, thereby achieving comparable performance. Based on this intuition, we propose ClusMatch, a unified positive and negative pseudo-label learning based semi-supervised learning framework, which is pluggable and can be applied to existing deep clustering methods. Specifically, we first leverage the pre-trained deep clustering network to compute predictions for all samples, and then design specialized selection strategies to pick out a few high-quality samples as labeled samples for supervised learning. For the unselected samples, the novel unified positive and negative pseudo-label learning is introduced to provide additional supervised signals for semi-supervised fine-tuning. We also propose an adaptive positive-negative threshold learning strategy to further enhance the confidence of generated pseudo-labels. Extensive experiments on six widely-used datasets and one large-scale dataset demonstrate the superiority of our proposed ClusMatch. For example, ClusMatch achieves a significant accuracy improvement of 5.4% over the state-of-the-art method ProPos on an average of these six datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI