已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ClusMatch: Improving Deep Clustering by Unified Positive and Negative Pseudo-label Learning

人工智能 计算机科学 聚类分析 深度学习 机器学习 模式识别(心理学)
作者
Jianlong Wu,Zihan Li,Wei Sun,Jianhua Yin,Liqiang Nie,Zhouchen Lin
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (11): 1-15
标识
DOI:10.1109/tpami.2025.3588239
摘要

Recently, deep clustering methods have achieved remarkable results compared to traditional clustering approaches. However, its performance remains constrained by the absence of annotations. A thought-provoking observation is that there is still a significant gap between deep clustering and semi-supervised classification methods. Even with only a few labeled samples, the accuracy of semi-supervised learning is much higher than that of clustering. Given that we can annotate a small number of samples in a certain unsupervised way, the clustering task can be naturally transformed into a semi-supervised setting, thereby achieving comparable performance. Based on this intuition, we propose ClusMatch, a unified positive and negative pseudo-label learning based semi-supervised learning framework, which is pluggable and can be applied to existing deep clustering methods. Specifically, we first leverage the pre-trained deep clustering network to compute predictions for all samples, and then design specialized selection strategies to pick out a few high-quality samples as labeled samples for supervised learning. For the unselected samples, the novel unified positive and negative pseudo-label learning is introduced to provide additional supervised signals for semi-supervised fine-tuning. We also propose an adaptive positive-negative threshold learning strategy to further enhance the confidence of generated pseudo-labels. Extensive experiments on six widely-used datasets and one large-scale dataset demonstrate the superiority of our proposed ClusMatch. For example, ClusMatch achieves a significant accuracy improvement of 5.4% over the state-of-the-art method ProPos on an average of these six datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愤怒的苗条完成签到 ,获得积分10
刚刚
年少丶完成签到,获得积分10
1秒前
邓娅琴完成签到 ,获得积分10
1秒前
XDSH完成签到 ,获得积分10
6秒前
搜集达人应助佛光辉采纳,获得10
12秒前
成就的笑南完成签到 ,获得积分10
14秒前
池雨完成签到 ,获得积分10
15秒前
19秒前
TN发布了新的文献求助10
25秒前
鲜艳的靖雁完成签到,获得积分10
26秒前
所所应助liiike采纳,获得10
26秒前
27秒前
32秒前
wuhanfei完成签到,获得积分10
37秒前
38秒前
多情的忆之完成签到,获得积分10
39秒前
CATH完成签到 ,获得积分10
39秒前
40秒前
卷卷卷儿完成签到 ,获得积分10
40秒前
zjz发布了新的文献求助10
41秒前
科研通AI2S应助佛光辉采纳,获得10
42秒前
廷聿完成签到,获得积分10
47秒前
48秒前
善学以致用应助讲真的采纳,获得10
49秒前
干净思远完成签到,获得积分10
50秒前
搜集达人应助科研通管家采纳,获得10
50秒前
50秒前
andrele应助科研通管家采纳,获得10
50秒前
50秒前
ding应助科研通管家采纳,获得10
51秒前
123发布了新的文献求助10
51秒前
tt完成签到 ,获得积分10
53秒前
乐观摸摸头完成签到 ,获得积分10
53秒前
年鱼精完成签到 ,获得积分10
57秒前
英姑应助佛光辉采纳,获得10
59秒前
悲凉的便当完成签到,获得积分10
59秒前
jintian完成签到 ,获得积分10
1分钟前
寻道图强完成签到,获得积分0
1分钟前
qqqq完成签到 ,获得积分20
1分钟前
小丸子完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627761
求助须知:如何正确求助?哪些是违规求助? 4714630
关于积分的说明 14963076
捐赠科研通 4785511
什么是DOI,文献DOI怎么找? 2555141
邀请新用户注册赠送积分活动 1516488
关于科研通互助平台的介绍 1476910