Finite element model correction method based on surrogate model with multiple working conditions and multiple measurement points

有限元法 替代模型 计算机科学 趋同(经济学) 数学优化 加速 扩展有限元法 混合有限元法 算法 应用数学 数学 结构工程 工程类 操作系统 经济 经济增长
作者
Mingchang Song,Quan Shi,Zhifeng You,Yongsheng Bai
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 015025-015025 被引量:4
标识
DOI:10.1088/1361-6501/ad0257
摘要

Abstract The finite element model inversion method has been widely used in recent years for iterative adjustment of finite element model parameters. However, the models constructed in the existing literature are weak and time consuming to adapt to the environment, which makes it difficult to adapt to the current needs of numerical simulations. To address the problem of large uncertainty in the material parameters of real objects and the difficulty of constructing finite element simulation models, a surrogate-based model correction method was proposed for multi-condition and multi-measurement point finite element models. The innovative use of the working condition parameter as one of the training parameters of the surrogate model to construct the optimal mathematical model for parameter correction of the finite element model to variable working conditions. To reduce the number of finite element model calls and speed up the convergence process, an Minimizing Prediction-CV-Voronoi parallel infill sampling method for the surrogate model was proposed to overcome the problems of easily falling into local optima and slow convergence when solving after constructing the surrogate model. The proposed parallel infill sampling method was tested using the test functions. The finite element model correction method with multiple working conditions and multiple measurement points was applied for material parameter correction and identification of aluminum alloys. The superiority of the proposed parallel point addition method in terms of the solution accuracy and speed was demonstrated. The results show that the multi-measurement points have a significant effect on improving the model correction effect, and the constructed multi-condition surrogate model can make fast predictions for arbitrary conditions and has strong environmental adaptability. The finite element model correction method proposed in this paper, with strong environmental adaptability, high accuracy and fast iteration, has been tested to be very effective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞快的邴完成签到,获得积分10
刚刚
脑洞疼应助默默听双采纳,获得10
1秒前
Microgan发布了新的文献求助10
2秒前
3秒前
maprang完成签到,获得积分10
3秒前
满意草丛发布了新的文献求助10
3秒前
河北完成签到,获得积分20
4秒前
浮游应助湉湉采纳,获得10
5秒前
xxfsx应助湉湉采纳,获得10
5秒前
聪慧的正豪应助湉湉采纳,获得10
5秒前
大聪明发布了新的文献求助10
5秒前
6秒前
爆米花应助顶针采纳,获得10
7秒前
lgwang完成签到,获得积分10
7秒前
WSR完成签到 ,获得积分10
7秒前
8秒前
河北发布了新的文献求助10
8秒前
沢雨发布了新的文献求助10
9秒前
11秒前
噜啦啦给噜啦啦的求助进行了留言
11秒前
小鹿完成签到,获得积分10
12秒前
12秒前
CodeCraft应助满意草丛采纳,获得10
12秒前
酷波er应助qazzzyy采纳,获得30
12秒前
淡挞完成签到 ,获得积分10
12秒前
研友_Lmb15n发布了新的文献求助10
14秒前
14秒前
rh发布了新的文献求助10
15秒前
君兰发布了新的文献求助10
16秒前
单细胞完成签到,获得积分20
16秒前
16秒前
科目三应助斯文飞雪采纳,获得10
17秒前
yi发布了新的文献求助30
17秒前
18秒前
18秒前
18秒前
胧胧关注了科研通微信公众号
19秒前
Microgan完成签到,获得积分10
19秒前
木一完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481597
求助须知:如何正确求助?哪些是违规求助? 4582625
关于积分的说明 14385853
捐赠科研通 4511310
什么是DOI,文献DOI怎么找? 2472314
邀请新用户注册赠送积分活动 1458592
关于科研通互助平台的介绍 1432094