Experimental investigation on the drag reduction mechanism of non-Newtonian flow in microchannels with wall cavities

物理 阻力 机械 机制(生物学) 流量(数学) 还原(数学) 牛顿流体 非牛顿流体 经典力学 几何学 数学 量子力学
作者
Yi Huang,Hao Ye,Shuai Yin,Ran Gao,Zhi Tao,Ting Li,Haiwang Li
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (3)
标识
DOI:10.1063/5.0258077
摘要

The research in the drag reduction mechanism of microscale flows plays a crucial role in fields such as biomedicine, energy systems, and microscale mechatronics. While most existing research primarily focuses on numerical simulations or measurements of simple Newtonian fluids flow in microchannels, little attention has been paid on non-Newtonian flow and its coupling effect with different wall cavities. In this work, we conducted a systematical investigation on the flow characteristics of non-Newtonian flow at microscale targeting on the coupling effect of the non-Newtonian shear thinning effect and cavitation structures for flow resistance reduction, where both the flow characteristics and the detailed flow fields were measured by means of self-built high speed micro-particle image velocimetry. The results prove that the coupling effect between microscale wall cavities and the shear-thinning effect of non-Newtonian flow can significantly reduce shear stress, achieving a maximum drag reduction rate of 77.06%. Among the six cavity structures tested, right-angled triangular cavities and semi-circular cavities exhibit superior drag reduction performance. The stagnant flow formed within right-angled triangular cavities can reduce the contact area between the main flow and the walls, thereby minimizing viscous losses. The highest streamlining degree of semi-circular cavities lowers localized vorticity and shear stress to reduce flow resistance. This work explores the drag reduction mechanism of non-Newtonian fluid coupled with wall cavities in microchannels from the perspective of experimental measurements, which can guide the design of microchannels focused on enhancing drag reduction and energy conservation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桐桐应助Jackcaosky采纳,获得20
刚刚
1秒前
小巧大山发布了新的文献求助10
1秒前
2秒前
zzb发布了新的文献求助10
2秒前
绫艾完成签到,获得积分10
3秒前
EoGangPe发布了新的文献求助10
3秒前
3秒前
纪星星发布了新的文献求助10
3秒前
3秒前
阿鱼完成签到,获得积分10
5秒前
5秒前
DanYang发布了新的文献求助10
5秒前
田様应助伟大的娃娃采纳,获得10
5秒前
5秒前
ZHOUMOU发布了新的文献求助10
5秒前
旅程发布了新的文献求助10
5秒前
黄金矿工发布了新的文献求助10
6秒前
万能图书馆应助yuuta采纳,获得10
6秒前
orixero应助等风来采纳,获得10
6秒前
在水一方应助sui采纳,获得10
7秒前
bkagyin应助gehao采纳,获得10
7秒前
z今晚吃哥斯拉1完成签到 ,获得积分10
7秒前
SYLH应助xiixix采纳,获得20
7秒前
8秒前
yooloo发布了新的文献求助30
8秒前
bkagyin应助djh采纳,获得10
8秒前
慕青应助hetao286采纳,获得10
8秒前
从容芸发布了新的文献求助10
9秒前
DanYang完成签到,获得积分10
10秒前
科研通AI5应助dida采纳,获得30
10秒前
乐乐猫完成签到,获得积分10
11秒前
阿鱼发布了新的文献求助10
11秒前
糊涂的雁易应助好运来采纳,获得10
11秒前
奋斗初南完成签到,获得积分10
11秒前
cctv18应助芜6采纳,获得30
11秒前
李健应助小鱼采纳,获得10
12秒前
无限翅膀完成签到,获得积分10
12秒前
哈哈哈发布了新的文献求助10
12秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Statistical Analysis with Missing Data 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832287
求助须知:如何正确求助?哪些是违规求助? 3374638
关于积分的说明 10485696
捐赠科研通 3094405
什么是DOI,文献DOI怎么找? 1703517
邀请新用户注册赠送积分活动 819480
科研通“疑难数据库(出版商)”最低求助积分说明 771587