亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Friction Coefficient for Ductile Cast Iron Using Artificial Neural Network Methodology Based on Experimental Investigation

铁氧体(磁铁) 人工神经网络 材料科学 贝氏体 反向传播 铸铁 摩擦系数 微观结构 控制理论(社会学) 计算机科学 复合材料 人工智能 奥氏体 控制(管理)
作者
Ahmad A. Khalaf,Muammel M. Hanon
出处
期刊:Applied sciences [MDPI AG]
卷期号:12 (23): 11916-11916 被引量:9
标识
DOI:10.3390/app122311916
摘要

The key objective of the present study is to analyze the friction coefficient and wear rate for ductile cast iron. Three different microstructures were chosen upon which to perform the experimental tests under different sliding time, load, and sliding speed conditions. These specimens were perlite + ferrite, ferrite, and bainitic. Moreover, an artificial neural network (ANN) model was developed in order to predict the friction coefficient using a set of data collected during the experiments. The ANN model structure was made up of four input parameters (namely time, load, number, and nodule diameter) and one output parameter (friction coefficient). The Levenberg–Marquardt back-propagation algorithm was applied in the ANN model to train the data using feed-forward back propagation (FFBP). The results of the experiments revealed that the coefficient of friction reduced as the sliding speed increased under a constant load. Additionally, it exhibits the same pattern of action when the test is run with a heavy load and constant sliding speed. Additionally, when the sliding speed increased, the wear rate dropped. The results also show that the bainite structure is harder and wears less quickly than the ferrite structure. Additionally, the results pertaining to the ANN structure showed that a single hidden layer model is more accurate than a double hidden layer model. The highest performance in the validation stage, however, was observed at epochs 8 and 20, respectively, for a double hidden layer and at 0.012346 for a single layer at epoch 20.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
konosuba完成签到,获得积分0
5秒前
官高一品发布了新的文献求助10
8秒前
9秒前
呵呵酱完成签到,获得积分10
11秒前
可爱的函函应助xjzx_xxh采纳,获得10
13秒前
cavendipeng完成签到 ,获得积分10
13秒前
还好完成签到 ,获得积分10
13秒前
烊烊完成签到 ,获得积分10
14秒前
吾系渣渣辉完成签到 ,获得积分10
14秒前
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
BowieHuang应助科研通管家采纳,获得10
15秒前
15秒前
浮游应助科研通管家采纳,获得10
15秒前
Linos应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
lnx完成签到,获得积分10
18秒前
烟花应助散装洋芋采纳,获得10
19秒前
Akim应助momo采纳,获得10
20秒前
官高一品完成签到,获得积分10
22秒前
25秒前
30秒前
散装洋芋发布了新的文献求助10
30秒前
33秒前
白沙湾发布了新的文献求助10
35秒前
憨憨的跳跳完成签到 ,获得积分10
36秒前
哈哈哈来打我呀完成签到,获得积分10
38秒前
白沙湾完成签到,获得积分10
48秒前
怂怂鼠完成签到,获得积分10
53秒前
一一一多完成签到 ,获得积分0
55秒前
Zyl完成签到 ,获得积分10
1分钟前
1分钟前
Jasper应助徐志豪采纳,获得10
1分钟前
汉堡包应助贪玩的飞莲采纳,获得10
1分钟前
其实完成签到 ,获得积分10
1分钟前
呵呵酱关注了科研通微信公众号
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554651
求助须知:如何正确求助?哪些是违规求助? 4639304
关于积分的说明 14655853
捐赠科研通 4581161
什么是DOI,文献DOI怎么找? 2512628
邀请新用户注册赠送积分活动 1487389
关于科研通互助平台的介绍 1458241