SPIRiT-Diffusion: Self-Consistency Driven Diffusion Model for Accelerated MRI

扩散 磁共振弥散成像 一致性(知识库) 自扩散 计算机科学 磁共振成像 人工智能 物理 医学 放射科 热力学 自助服务 计算机安全
作者
Zhuo‐Xu Cui,Chentao Cao,Yue Wang,Sen Jia,Jing Cheng,Xin Liu,Hairong Zheng,Dong Liang,Yanjie Zhu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:4
标识
DOI:10.1109/tmi.2024.3473009
摘要

Diffusion models have emerged as a leading methodology for image generation and have proven successful in the realm of magnetic resonance imaging (MRI) reconstruction. However, existing reconstruction methods based on diffusion models are primarily formulated in the image domain, making the reconstruction quality susceptible to inaccuracies in coil sensitivity maps (CSMs). k-space interpolation methods can effectively address this issue but conventional diffusion models are not readily applicable in k-space interpolation. To overcome this challenge, we introduce a novel approach called SPIRiT-Diffusion, which is a diffusion model for k-space interpolation inspired by the iterative self-consistent SPIRiT method. Specifically, we utilize the iterative solver of the self-consistent term (i.e., k-space physical prior) in SPIRiT to formulate a novel stochastic differential equation (SDE) governing the diffusion process. Subsequently, k-space data can be interpolated by executing the diffusion process. This innovative approach highlights the optimization model's role in designing the SDE in diffusion models, enabling the diffusion process to align closely with the physics inherent in the optimization model-a concept referred to as model-driven diffusion. We evaluated the proposed SPIRiT-Diffusion method using a 3D joint intracranial and carotid vessel wall imaging dataset. The results convincingly demonstrate its superiority over image-domain reconstruction methods, achieving high reconstruction quality even at a substantial acceleration rate of 10. Our code are available at https://github.com/zhyjSIAT/SPIRiT-Diffusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mistletoe完成签到,获得积分20
1秒前
2秒前
3秒前
3秒前
4秒前
4秒前
田様应助swan采纳,获得10
4秒前
4秒前
荷兰猪完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
塔木发布了新的文献求助10
7秒前
陈哲完成签到,获得积分10
7秒前
7秒前
多走一步发布了新的文献求助30
8秒前
8秒前
LooYen发布了新的文献求助10
9秒前
安静季节发布了新的文献求助10
9秒前
炙热晓露发布了新的文献求助10
9秒前
舒心的青亦完成签到 ,获得积分10
9秒前
NexusExplorer应助cc采纳,获得10
10秒前
浮游应助和谐的敏采纳,获得10
10秒前
奕安完成签到,获得积分10
10秒前
Leon发布了新的文献求助10
11秒前
11秒前
pang发布了新的文献求助10
12秒前
喜悦的易槐完成签到,获得积分20
12秒前
胡六六发布了新的文献求助10
12秒前
wkk417发布了新的文献求助10
12秒前
田様应助leeza采纳,获得200
14秒前
顾矜应助坚强的笑天采纳,获得10
14秒前
英俊的铭应助阿呆采纳,获得10
14秒前
现代的以珊完成签到,获得积分10
14秒前
Ava应助杨禄圆采纳,获得10
14秒前
chunyeliangchuan完成签到,获得积分10
15秒前
16秒前
美鹿完成签到 ,获得积分20
17秒前
17秒前
luoqin发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461306
求助须知:如何正确求助?哪些是违规求助? 4566276
关于积分的说明 14304569
捐赠科研通 4492010
什么是DOI,文献DOI怎么找? 2460639
邀请新用户注册赠送积分活动 1449964
关于科研通互助平台的介绍 1425599