The genetic architecture of biological age in nine human organ systems

遗传建筑学 建筑 生物 进化生物学 计算生物学 计算机科学 地理 遗传学 基因 考古 表型
作者
Junhao Wen,Ye Tian,Ioanna Skampardoni,Zhijian Yang,Yuhan Cui,Filippos Anagnostakis,Elizabeth Mamourian,Bingxin Zhao,Arthur W. Toga,Andrew Zalesky,Christos Davatzikos
出处
期刊:Nature Aging 卷期号:4 (9): 1290-1307 被引量:41
标识
DOI:10.1038/s43587-024-00662-8
摘要

Investigating the genetic underpinnings of human aging is essential for unraveling the etiology of and developing actionable therapies for chronic diseases. Here, we characterize the genetic architecture of the biological age gap (BAG; the difference between machine learning-predicted age and chronological age) across nine human organ systems in 377,028 participants of European ancestry from the UK Biobank. The BAGs were computed using cross-validated support vector machines, incorporating imaging, physical traits and physiological measures. We identify 393 genomic loci–BAG pairs (P < 5 × 10–8) linked to the brain, eye, cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary and renal systems. Genetic variants associated with the nine BAGs are predominantly specific to the respective organ system (organ specificity) while exerting pleiotropic links with other organ systems (interorgan cross-talk). We find that genetic correlation between the nine BAGs mirrors their phenotypic correlation. Further, a multiorgan causal network established from two-sample Mendelian randomization and latent causal variance models revealed potential causality between chronic diseases (for example, Alzheimer's disease and diabetes), modifiable lifestyle factors (for example, sleep duration and body weight) and multiple BAGs. Our results illustrate the potential for improving human organ health via a multiorgan network, including lifestyle interventions and drug repurposing strategies. Using machine learning techniques applied to multimodal UK Biobank data, Wen et al. characterize the genetic basis of the biological age gaps of individual organs, uncovering interorgan cross-talk and links between chronic diseases, lifestyle factors and biological age gaps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助dd采纳,获得10
1秒前
1秒前
开朗的早晨完成签到,获得积分10
2秒前
2秒前
科研狗发布了新的文献求助10
2秒前
杨筱涵发布了新的文献求助10
3秒前
mayocoh发布了新的文献求助10
5秒前
5秒前
syalonyui完成签到,获得积分10
6秒前
7秒前
謓言完成签到 ,获得积分10
7秒前
LegendThree完成签到,获得积分10
9秒前
10秒前
CipherSage应助liang2508采纳,获得10
11秒前
11秒前
12秒前
万能图书馆应助mayocoh采纳,获得10
12秒前
13秒前
花花完成签到,获得积分10
13秒前
烟花应助士心采纳,获得10
14秒前
敏感的莺发布了新的文献求助10
15秒前
15秒前
MWY完成签到,获得积分10
15秒前
真银铃完成签到,获得积分10
16秒前
桐桐应助栗子醚纳米采纳,获得10
16秒前
嘟嘟嘟发布了新的文献求助10
16秒前
17秒前
所所应助毅诚菌采纳,获得10
17秒前
17秒前
浮浮完成签到,获得积分10
18秒前
18秒前
ywty发布了新的文献求助30
19秒前
ding应助swallow采纳,获得10
19秒前
科研通AI6应助xxx采纳,获得10
20秒前
21秒前
智慧吗喽完成签到,获得积分10
22秒前
清脆的初蝶完成签到 ,获得积分10
23秒前
23秒前
不吃橘子完成签到,获得积分10
23秒前
24秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381603
求助须知:如何正确求助?哪些是违规求助? 4504833
关于积分的说明 14019613
捐赠科研通 4414148
什么是DOI,文献DOI怎么找? 2424618
邀请新用户注册赠送积分活动 1417618
关于科研通互助平台的介绍 1395411