上睑下垂
胶质母细胞瘤
顺铂
免疫疗法
化学
癌症研究
药理学
医学
细胞凋亡
免疫系统
免疫学
生物化学
程序性细胞死亡
化疗
内科学
作者
Xinyan Hao,Yucheng Tang,Wenjie Xu,Ming Wang,Jiayi Liu,Yongjiang Li,Jun He,Yanjin Peng,Pengcheng Sun,Dehua Liao,Xiong-Bin Hu,Tiantian Tang,Min Zhou,Ruyue Han,Jiemin Wang,João Conde,Da-Xiong Xiang,Junyong Wu
标识
DOI:10.1186/s12951-025-03091-w
摘要
Glioblastoma multiforme (GBM) is characterized by pronounced immune escape and resistance to chemotherapy-induced apoptosis. Preliminary investigations revealed a marked overexpression of gasdermin E (GSDME) in GBM. Notably, cisplatin (CDDP) demonstrated a capacity of inducing pyroptosis by activating caspase-3 to cleave GSDME, coupled with the release of proinflammatory factors, indicating the potential as a viable approach of inducing anti-tumor immune activation. For the effective delivery of CDDP, the CDDP-polyphenol nanocomplexes were prepared, and catalase and copper ions were incorporated to fortify structural integrity, enhance glutathione (GSH) responsiveness, and ameliorate tumor hypoxia. Additionally, BV2 microglial cells were engineered to overexpress programmed death-1 (PD-1), and the membrane is employed for nanocomplex coating, effectively blocking the CDDP-induced upregulation of programmed death ligand 1 (PD-L1). Furthermore, the angiopep-2 peptide was modified to efficiently cross the blood brain barrier and specifically target GBM cells. In vitro analyses confirmed potent cytotoxicity and characteristic induction of pyroptosis. In vivo assays corroborated the enhancement of tumor targeting, culminating in an obvious suppression of tumor proliferation. A notable activation of immune cells was observed within tumors and lymph nodes, indicative of a synergistic effect of chemotherapy and immunotherapy, underscoring its potential as a safe and efficacious therapeutic strategy against GBM.
科研通智能强力驱动
Strongly Powered by AbleSci AI