Female perspectives on algorithmic bias: implications for AI researchers and practitioners

授权 不公正 不平等 建设性的 实证研究 人工智能 计算机科学 心理学 社会心理学 政治学 数学分析 哲学 数学 过程(计算) 认识论 法学 操作系统
作者
Belen Fraile-Rojas,Carmen De‐Pablos‐Heredero,Mariano Méndez-Suárez
出处
期刊:Management Decision [Emerald (MCB UP)]
被引量:1
标识
DOI:10.1108/md-04-2024-0884
摘要

Purpose This article explores the use of natural language processing (NLP) techniques and machine learning (ML) models to discover underlying concepts of gender inequality applied to artificial intelligence (AI) technologies in female social media conversations. The first purpose is to characterize female users who use this platform to share content around this area. The second is to identify the most prominent themes among female users’ digital production of gender inequality concepts, applied to AI technologies. Design/methodology/approach Social opinion mining has been applied to historical Twitter data. Data were gathered using a combination of analytical methods such as word clouds, sentiment analyses and clustering. It examines 172,041 tweets worldwide over a limited period of 359 days. Findings Empirical data gathered from interactions of female users in digital dialogues highlight that the most prominent topics of interest are the future of AI technologies and the active role of women to guarantee gender balanced systems. Algorithmic bias impacts female user behaviours in response to injustice and inequality in algorithmic outcomes. They share topics of interest and lead constructive conversations with profiles affiliated with gender or race empowerment associations. Women challenged by stereotypes and prejudices are likely to fund entrepreneurial solutions to create opportunities for change. Research limitations/implications This study does have its limitations, however. First, different keywords are likely to result in a different pool of related research. Moreover, due to the nature of our sample, the largest proportion of posts are from native English speakers, predominantly (88%) from the US, UK, Australia and Canada. This demographic concentration reflects specific social structures and practices that influence gender equity priorities within the sample. These cultural contexts, which often emphasize inclusivity and equity, play a significant role in shaping the discourse around gender issues. These cultural norms, preferences and practices are critical in understanding the individual behaviours, perspectives and priorities expressed in the posts; in other words, it is vital to consider cultural context and economic determinants in an analysis of gender equity discussions. The US, UK, Australia and Canada share a cultural and legal heritage, a common language, values, democracy and the rule of law. Bennett (2007) emphasizes the potential for enhanced cooperation in areas like technology, trade and security, suggesting that the anglosphere’s cultural and institutional commonalities create a natural foundation for a cohesive, influential global network. These shared characteristics further influence the common approaches and perspectives on gender equity in public discourse. Yet findings from Western nations should not be assumed to apply easily to the contexts of other countries. Practical implications From a practical perspective, the results help us understand the role of female influencers and scrutinize public conversations. From a theoretical one, this research upholds the argument that feminist critical thought is indispensable in the development of balanced AI systems. Social implications The results also help us understand the role of female influencers: ordinary individuals often challenged by gender and race discrimination. They request an intersectional, collaborative and pluralistic understanding of gender and race in AI. They act alone and endure the consequences of stigmatized products and services. AI curators should strongly consider advocating for responsible, impartial technologies, recognizing the indispensable role of women. This must consider all stakeholders, including representatives from industry, small and medium-sized enterprises (SMEs), civil society and academia. Originality/value This study aims to fill critical research gaps by addressing the lack of a socio-technical perspective on AI-based decision-making systems, the shortage of empirical studies in the field and the need for a critical analysis using feminist theories. The study offers valuable insights that can guide managerial decision-making for AI researchers and practitioners, providing a comprehensive understanding of the topic through a critical lens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
涛涛完成签到,获得积分10
8秒前
羽冰酒完成签到 ,获得积分10
11秒前
Research完成签到 ,获得积分10
13秒前
健壮的绿凝完成签到,获得积分10
23秒前
zhang完成签到 ,获得积分10
29秒前
was_3完成签到,获得积分0
33秒前
luluyang完成签到 ,获得积分10
41秒前
Horizon完成签到,获得积分10
43秒前
量子星尘发布了新的文献求助10
44秒前
53秒前
日初发布了新的文献求助10
58秒前
1分钟前
苗条鸡翅完成签到 ,获得积分10
1分钟前
动听的飞松完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
阿甘发布了新的文献求助10
1分钟前
buerzi完成签到,获得积分10
1分钟前
风中可仁完成签到 ,获得积分10
1分钟前
spinon发布了新的文献求助10
1分钟前
wzk完成签到,获得积分10
1分钟前
spring完成签到 ,获得积分10
1分钟前
LaixS完成签到,获得积分10
1分钟前
要笑cc完成签到,获得积分10
1分钟前
辞旧完成签到,获得积分10
1分钟前
宣宣宣0733完成签到,获得积分10
1分钟前
胡质斌完成签到,获得积分10
1分钟前
温暖的如冰完成签到,获得积分10
1分钟前
回忆应助科研通管家采纳,获得10
1分钟前
无奈的代珊完成签到 ,获得积分10
1分钟前
Qq完成签到 ,获得积分10
1分钟前
spinon完成签到,获得积分10
1分钟前
杰尼乾乾完成签到 ,获得积分10
1分钟前
合适醉蝶完成签到 ,获得积分10
1分钟前
stark完成签到,获得积分10
1分钟前
qiancib202完成签到,获得积分0
1分钟前
今后应助爱笑的香寒采纳,获得10
2分钟前
Ly完成签到 ,获得积分10
2分钟前
席康发布了新的文献求助10
2分钟前
胡图图完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5640010
求助须知:如何正确求助?哪些是违规求助? 4751833
关于积分的说明 15007880
捐赠科研通 4798238
什么是DOI,文献DOI怎么找? 2564353
邀请新用户注册赠送积分活动 1523146
关于科研通互助平台的介绍 1482790