亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of Defects in Polyethylene and Polyamide Flat Panels Using Airborne Ultrasound-Traditional and Machine Learning Approach

聚酰胺 材料科学 聚乙烯 超声波 声学 复合材料 物理
作者
Anna Krolik,Radosław Drelich,Michał Pakuła,Dariusz Mikołajewski,Izabela Rojek
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (22): 10638-10638 被引量:1
标识
DOI:10.3390/app142210638
摘要

This paper presents the use of noncontact ultrasound for the nondestructive detection of defects in two plastic plates made of polyamide (PA6) and polyethylene (PE). The aim of the study was to: (1) assess the presence of defects as well as their size, type, and orientation based on the amplitudes of Lamb ultrasonic waves measured in plates made of polyamide (PA6) and polyethylene (PE) due to their homogeneous internal structure, which mainly determined the selection of such model materials for testing; and (2) verify the possibilities of building automatic quality control and defect detection systems based on ML based on the results of the above-mentioned studies within the Industry 4.0/5.0 paradigm. Tests were conducted on plates with generated synthetic defects resembling defects found in real materials such as delamination and cracking at the edge of the plate and a crack (discontinuity) in the center of the plate. Defect sizes ranged from 1 mm to 15 mm. Probes at 30 kHz were used to excite Lamb waves in the slab material. This method is sensitive to the slightest changes in material integrity. A significant decrease in signal amplitude was observed, even for defects of a few millimeters in length. In addition to traditional methods, machine learning (ML) was used for the analysis, allowing an initial assessment of the method’s potential for building cyber-physical systems and digital twins. By training ML models on ultrasonic data, algorithms can distinguish subtle differences between signals reflected from normal and defective areas of the material. Defect types such as voids, cracks, or weak bonds often produce distinct acoustic signatures, which ML models can learn to recognize with high accuracy. Using techniques like feature extraction, ML can process these high-dimensional ultrasonic datasets, identifying patterns that human inspectors might overlook. Furthermore, ML models are adaptable, allowing the same trained algorithms to work on various material batches or panel types with minimal retraining. This combination of automation and precision significantly enhances the reliability and efficiency of quality control in industrial manufacturing settings. The achieved accuracy results, 0.9431 in classification and 0.9721 in prediction, are comparable to or better than the AI-based quality control results in other noninvasive methods of flat surface defect detection, and in the presented ultrasonic method, they are the first described in this way. This approach demonstrates the novelty and contribution of artificial intelligence (AI) methods and tools, significantly extending and automating existing applications of traditional methods. The susceptibility to augmentation by AI/ML may represent an important new property of traditional methods crucial to assessing their suitability for future Industry 4.0/5.0 applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
计划发布了新的文献求助10
7秒前
10秒前
Jerry完成签到 ,获得积分10
13秒前
Smithjiang完成签到 ,获得积分10
16秒前
从来都不会放弃zr完成签到,获得积分10
17秒前
19秒前
22秒前
想听水星记完成签到,获得积分10
23秒前
优美紫槐发布了新的文献求助10
24秒前
wang发布了新的文献求助10
28秒前
乐乐应助BU懂学术采纳,获得10
29秒前
30秒前
BU懂学术完成签到,获得积分20
33秒前
37秒前
伯云完成签到,获得积分10
41秒前
yuanyuan发布了新的文献求助10
42秒前
43秒前
45秒前
BU懂学术发布了新的文献求助10
47秒前
52秒前
52秒前
海洋球发布了新的文献求助10
56秒前
侯锐淇完成签到 ,获得积分10
57秒前
1分钟前
dly完成签到 ,获得积分10
1分钟前
CipherSage应助尖头叉子采纳,获得10
1分钟前
李健应助优美紫槐采纳,获得10
1分钟前
hcdb完成签到,获得积分10
1分钟前
培培完成签到 ,获得积分10
1分钟前
kiterunner完成签到,获得积分10
1分钟前
1分钟前
wang完成签到 ,获得积分20
1分钟前
尖头叉子发布了新的文献求助10
1分钟前
肉沫鸭完成签到,获得积分10
1分钟前
breeze完成签到,获得积分10
1分钟前
尖头叉子完成签到,获得积分10
1分钟前
李爱国应助aliu采纳,获得30
1分钟前
烂漫向卉发布了新的文献求助10
1分钟前
畅快的长颈鹿完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599690
求助须知:如何正确求助?哪些是违规求助? 4685406
关于积分的说明 14838430
捐赠科研通 4669946
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898