1D CNN Based Human Respiration Pattern Recognition using Ultra Wideband Radar

雷达 人工智能 呼吸 计算机科学 支持向量机 模式识别(心理学) 主成分分析 卷积神经网络 特征提取 医学 电信 解剖
作者
Seong-Hoon Kim,Gi-Tae Han
标识
DOI:10.1109/icaiic.2019.8669000
摘要

The respiration status of a person is one of the vital signs that can be used to check the health condition of the person. The respiration status has been measured in various ways in the medical and healthcare sectors. Contact type sensors were conventionally used to measure respiration. The contact type sensors have been used primarily in the medical sector, because they can be only used in a limited environment. Recent studies have evaluated the ways of detecting human respiration patterns using Ultra-Wideband (UWB) Radar, which relies on non-contact type sensors. Previous studies evaluated the apnea pattern during sleep by analyzing the respiration signals acquired by UWB Radar using a principal component analysis (PCA). However, it is necessary to measure various respiration patterns in addition to apnea in order to accurately analyze the health condition of an individual in the healthcare sector. Therefore, this study proposed a method to recognize four respiration patterns based on the 1D convolutional neural network from the respiration signals acquired from UWB Radar. The proposed method extracts the eupnea, bradypnea, tachypnea, and apnea respiration patterns from UWB Radar and composes a learning dataset. The proposed method learned data through 1D CNN and the recognition accuracy was measured. The results of this study revealed that the accuracy of the proposed method was up to 15% higher than that of the conventional classification algorithms (i.e., PCA and Support Vector Machine (SVM)).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xieyusen完成签到,获得积分10
刚刚
张钧凯发布了新的文献求助10
刚刚
科研通AI6应助正在下雨采纳,获得10
1秒前
HH完成签到,获得积分20
1秒前
寒冷的云朵完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
清爽海白完成签到 ,获得积分10
2秒前
爱上百香果完成签到,获得积分10
3秒前
lps发布了新的文献求助10
4秒前
4秒前
科研yu发布了新的文献求助10
5秒前
浮游应助橙子采纳,获得10
6秒前
白洋洋发布了新的文献求助10
6秒前
Imp发布了新的文献求助10
6秒前
7秒前
科研通AI6应助默默善愁采纳,获得10
7秒前
英俊的铭应助得鹿梦鱼采纳,获得10
7秒前
7秒前
8秒前
ohh完成签到,获得积分10
8秒前
黄慧完成签到,获得积分10
8秒前
8秒前
gj0418发布了新的文献求助10
9秒前
韩_x发布了新的文献求助10
9秒前
Cao完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
lan发布了新的文献求助10
11秒前
樊文慧发布了新的文献求助10
11秒前
浮游应助MRu采纳,获得10
12秒前
wangjun发布了新的文献求助20
12秒前
清新发布了新的文献求助10
12秒前
归尘发布了新的文献求助10
12秒前
无极微光应助甘特采纳,获得20
13秒前
SJ7发布了新的文献求助10
13秒前
14秒前
易落发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431130
求助须知:如何正确求助?哪些是违规求助? 4544274
关于积分的说明 14191498
捐赠科研通 4462799
什么是DOI,文献DOI怎么找? 2446662
邀请新用户注册赠送积分活动 1438033
关于科研通互助平台的介绍 1414664