已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction Breast Molecular Typing of Invasive Ductal Carcinoma Based on Dynamic Contrast Enhancement Magnetic Resonance Imaging Radiomics Characteristics: A Feasibility Study

逻辑回归 接收机工作特性 磁共振成像 无线电技术 乳腺癌 医学 动态对比度 乳房磁振造影 Lasso(编程语言) 动态增强MRI 特征选择 人工智能 计算机科学 放射科 乳腺摄影术 癌症 内科学 万维网
作者
Aqiao Xu,Xiufeng Chu,Shengjian Zhang,Jing Zheng,Dabao Shi,Shasha Lv,Feng Li,Xiaobo Weng
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:12 被引量:3
标识
DOI:10.3389/fonc.2022.799232
摘要

To investigate the feasibility of radiomics in predicting molecular subtype of breast invasive ductal carcinoma (IDC) based on dynamic contrast enhancement magnetic resonance imaging (DCE-MRI).A total of 303 cases with pathologically confirmed IDC from January 2018 to March 2021 were enrolled in this study, including 223 cases from Fudan University Shanghai Cancer Center (training/test set) and 80 cases from Shaoxing Central Hospital (validation set). All the cases were classified as HR+/Luminal, HER2-enriched, and TNBC according to immunohistochemistry. DCE-MRI original images were treated by semi-automated segmentation to initially extract original and wavelet-transformed radiomic features. The extended logistic regression with least absolute shrinkage and selection operator (LASSO) penalty was applied to identify the optimal radiomic features, which were then used to establish predictive models combined with significant clinical risk factors. Receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis were adopted to evaluate the effectiveness and clinical benefit of the models established.Of the 223 cases from Fudan University Shanghai Cancer Center, HR+/Luminal cancers were diagnosed in 116 cases (52.02%), HER2-enriched in 71 cases (31.84%), and TNBC in 36 cases (16.14%). Based on the training set, 788 radiomic features were extracted in total and 8 optimal features were further identified, including 2 first-order features, 1 gray-level run length matrix (GLRLM), 4 gray-level co-occurrence matrices (GLCM), and 1 3D shape feature. Three multi-class classification models were constructed by extended logistic regression: clinical model (age, menopause, tumor location, Ki-67, histological grade, and lymph node metastasis), radiomic model, and combined model. The macro-average areas under the ROC curve (macro-AUC) for the three models were 0.71, 0.81, and 0.84 in the training set, 0.73, 0.81, and 0.84 in the test set, and 0.76, 0.82, and 0.83 in the validation set, respectively.The DCE-MRI-based radiomic features are significant biomarkers for distinguishing molecular subtypes of breast cancer noninvasively. Notably, the classification performance could be improved with the fusion analysis of multi-modal features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助VLH采纳,获得10
刚刚
ODN发布了新的文献求助10
1秒前
1秒前
怕黑的凝旋完成签到 ,获得积分10
2秒前
组难装完成签到,获得积分10
3秒前
TRY发布了新的文献求助10
6秒前
果汁儿完成签到 ,获得积分10
7秒前
11秒前
VLH发布了新的文献求助10
14秒前
16秒前
21秒前
22秒前
拉稀摆带完成签到 ,获得积分10
24秒前
Nove发布了新的文献求助30
25秒前
27秒前
爆米花应助淡然的冰薇采纳,获得10
29秒前
TRY发布了新的文献求助10
32秒前
Vito完成签到,获得积分10
32秒前
拉长的问凝完成签到 ,获得积分10
38秒前
科研通AI5应助张先生采纳,获得10
40秒前
搞怪不愁完成签到 ,获得积分10
51秒前
51秒前
完美世界应助传统的盈采纳,获得10
58秒前
1分钟前
1分钟前
1分钟前
平常的可乐完成签到 ,获得积分10
1分钟前
cdercder应助hahaha采纳,获得10
1分钟前
1分钟前
小全发布了新的文献求助10
1分钟前
1分钟前
wf0806发布了新的文献求助10
1分钟前
LLLLL发布了新的文献求助10
1分钟前
1分钟前
Song君发布了新的文献求助10
1分钟前
luogan发布了新的文献求助10
1分钟前
Ava应助ANmin采纳,获得10
1分钟前
TRY关闭了TRY文献求助
1分钟前
1分钟前
松19完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778969
求助须知:如何正确求助?哪些是违规求助? 3324660
关于积分的说明 10219108
捐赠科研通 3039619
什么是DOI,文献DOI怎么找? 1668356
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758467