德拉津逆
人工神经网络
数学
反向
趋同(经济学)
基质(化学分析)
极限(数学)
复矩阵
算法
应用数学
域代数上的
计算机科学
纯数学
人工智能
数学分析
几何学
经济增长
色谱法
复合材料
经济
化学
材料科学
作者
Xuezhong Wang,Yimin Wei,Predrag S. Stanimirović
摘要
Two complex Zhang neural network (ZNN) models for computing the Drazin inverse of arbitrary time-varying complex square matrix are presented. The design of these neural networks is based on corresponding matrix-valued error functions arising from the limit representations of the Drazin inverse. Two types of activation functions, appropriate for handling complex matrices, are exploited to develop each of these networks. Theoretical results of convergence analysis are presented to show the desirable properties of the proposed complex-valued ZNN models. Numerical results further demonstrate the effectiveness of the proposed models.
科研通智能强力驱动
Strongly Powered by AbleSci AI