计算机科学
神经形态工程学
帧(网络)
事件(粒子物理)
卷积神经网络
光电二极管
计算机视觉
人工智能
跨阻放大器
帧速率
RGB颜色模型
图像传感器
前端和后端
滤波器(信号处理)
人工神经网络
模拟前端
实时计算
放大器
计算机硬件
电子工程
压缩传感
运动估计
像素
图像处理
软件
信号处理
信号(编程语言)
同时定位和映射
光学滤波器
作者
Yelim Kim,Hyeonsu Park,Minjoo Kim,Suhee Jang,Dae Yeop Jeong,Lia Saptini Handriani,Hyuncheol Yun,Namyoung Gwak,Nuri Oh,S. Yang,Soyeong Kwon,SungWoo Nam,Won Il Park
标识
DOI:10.1038/s41467-025-68013-8
摘要
Efficient dynamic vision requires capturing instantaneous changes and temporal context, yet existing image and event sensors rely on power-hungry digital processing. Here, we introduce an in-sensor dual-response architecture that concurrently generates analog event spikes and persistent memory tails. A prototype sensor integrates phosphor pairs with silicon photodiodes and transimpedance amplifiers to achieve microsecond- and millisecond-scale dual kinetics. Measurements during light-emitting diode replay reconstruct event frames that match software frame differences, while the slow channel behaves as a linear reservoir of motion history. A single memory frame fed to a convolutional neural network enables accurate classification of human actions (93.1%) and vehicle trajectories (98.0%), as well as speed estimation with errors of 2.15 km/h. Integration with a compressive optical neural network front end mapping 4900 inputs to 16 per frame yields 93.3% action classification accuracy. By eliminating analog-to-digital conversion and digital accumulation, this approach enables ultralow-latency, ultralow-power neuromorphic vision.
科研通智能强力驱动
Strongly Powered by AbleSci AI