Softmax函数
判别式
计算机科学
人工智能
特征(语言学)
嵌入
零(语言学)
班级(哲学)
模式识别(心理学)
语义特征
机器学习
弹丸
任务(项目管理)
特征学习
深度学习
经济
有机化学
化学
管理
哲学
语言学
作者
Yongqin Xian,Tobias Lorenz,Bernt Schiele,Zeynep Akata
标识
DOI:10.1109/cvpr.2018.00581
摘要
Suffering from the extreme training data imbalance between seen and unseen classes, most of existing state-of-the-art approaches fail to achieve satisfactory results for the challenging generalized zero-shot learning task. To circumvent the need for labeled examples of unseen classes, we propose a novel generative adversarial network (GAN) that synthesizes CNN features conditioned on class-level semantic information, offering a shortcut directly from a semantic descriptor of a class to a class-conditional feature distribution. Our proposed approach, pairing a Wasserstein GAN with a classification loss, is able to generate sufficiently discriminative CNN features to train softmax classifiers or any multimodal embedding method. Our experimental results demonstrate a significant boost in accuracy over the state of the art on five challenging datasets - CUB, FLO, SUN, AWA and ImageNet - in both the zero-shot learning and generalized zero-shot learning settings.
科研通智能强力驱动
Strongly Powered by AbleSci AI