Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles

偶极子 键偶极矩 原子电荷 原子物理学 电偶极子跃迁 物理 磁偶极子 量子力学 分子
作者
Max Veit,David M. Wilkins,Yang Yang,Robert A. DiStasio,Michele Ceriotti
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:153 (2) 被引量:115
标识
DOI:10.1063/5.0009106
摘要

The molecular dipole moment (μ) is a central quantity in chemistry. It is essential in predicting infrared and sum-frequency generation spectra as well as induction and long-range electrostatic interactions. Furthermore, it can be extracted directly-via the ground state electron density-from high-level quantum mechanical calculations, making it an ideal target for machine learning (ML). In this work, we choose to represent this quantity with a physically inspired ML model that captures two distinct physical effects: local atomic polarization is captured within the symmetry-adapted Gaussian process regression framework which assigns a (vector) dipole moment to each atom, while the movement of charge across the entire molecule is captured by assigning a partial (scalar) charge to each atom. The resulting "MuML" models are fitted together to reproduce molecular μ computed using high-level coupled-cluster theory and density functional theory (DFT) on the QM7b dataset, achieving more accurate results due to the physics-based combination of these complementary terms. The combined model shows excellent transferability when applied to a showcase dataset of larger and more complex molecules, approaching the accuracy of DFT at a small fraction of the computational cost. We also demonstrate that the uncertainty in the predictions can be estimated reliably using a calibrated committee model. The ultimate performance of the models-and the optimal weighting of their combination-depends, however, on the details of the system at hand, with the scalar model being clearly superior when describing large molecules whose dipole is almost entirely generated by charge separation. These observations point to the importance of simultaneously accounting for the local and non-local effects that contribute to μ; furthermore, they define a challenging task to benchmark future models, particularly those aimed at the description of condensed phases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jjx1005完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
一个小胖子完成签到,获得积分10
4秒前
nicheng完成签到 ,获得积分0
4秒前
CadoreK完成签到 ,获得积分10
4秒前
涛1完成签到 ,获得积分10
11秒前
jinjing完成签到,获得积分10
13秒前
冷傲凝琴完成签到,获得积分10
13秒前
单小芫完成签到 ,获得积分10
14秒前
hhh2018687完成签到,获得积分10
14秒前
Lrcx完成签到 ,获得积分10
16秒前
elsa622完成签到 ,获得积分10
16秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
潇洒的宛菡完成签到,获得积分10
18秒前
杨纪春完成签到 ,获得积分10
23秒前
26秒前
AUGKING27完成签到 ,获得积分10
27秒前
Chen完成签到 ,获得积分10
28秒前
Yonckham完成签到,获得积分10
28秒前
Dr_Shi完成签到,获得积分10
31秒前
enternow完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
33秒前
甜美的秋尽完成签到,获得积分10
39秒前
ioio完成签到 ,获得积分10
40秒前
Emperor完成签到 ,获得积分0
41秒前
Jeffrey完成签到,获得积分10
42秒前
小小咸鱼完成签到 ,获得积分10
47秒前
天凉王破完成签到 ,获得积分10
48秒前
一亩蔬菜完成签到,获得积分10
48秒前
wang完成签到,获得积分10
49秒前
小葵花完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助10
52秒前
思源应助战斗暴龙兽采纳,获得10
52秒前
55秒前
enen完成签到 ,获得积分10
56秒前
震动的鹏飞完成签到 ,获得积分10
57秒前
拼搏的亦玉完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5032824
求助须知:如何正确求助?哪些是违规求助? 4266802
关于积分的说明 13299545
捐赠科研通 4076671
什么是DOI,文献DOI怎么找? 2229834
邀请新用户注册赠送积分活动 1238258
关于科研通互助平台的介绍 1163727