计算机科学
随机优化
光学(聚焦)
加速度
数学优化
凸优化
订单(交换)
正多边形
算法
优化算法
最优化问题
数学
物理
几何学
经典力学
经济
财务
光学
作者
Huan Li,Cong Fang,Zhouchen Lin
出处
期刊:Proceedings of the IEEE
[Institute of Electrical and Electronics Engineers]
日期:2020-11-01
卷期号:108 (11): 2067-2082
被引量:22
标识
DOI:10.1109/jproc.2020.3007634
摘要
Numerical optimization serves as one of the pillars of machine learning. To meet the demands of big data applications, lots of efforts have been put on designing theoretically and practically fast algorithms. This article provides a comprehensive survey on accelerated first-order algorithms with a focus on stochastic algorithms. Specifically, this article starts with reviewing the basic accelerated algorithms on deterministic convex optimization, then concentrates on their extensions to stochastic convex optimization, and at last introduces some recent developments on acceleration for nonconvex optimization.
科研通智能强力驱动
Strongly Powered by AbleSci AI