Enhancing the catalytic activity of a GH5 processive endoglucanase from Bacillus subtilis BS-5 by site-directed mutagenesis

饱和突变 枯草芽孢杆菌 活动站点 定点突变 丙氨酸扫描 突变 蛋白质工程 突变体 化学 酶动力学 基质(水族馆) 纤维素酶 生物化学 立体化学 丙氨酸 同源建模 水解 结合位点 氨基酸 生物 细菌 遗传学 基因 生态学
作者
Kemin Lv,Wenyu Shao,Marcelo Monteiro Pedroso,Jiayu Peng,Bin Wu,Jiahuang Li,Bingfang He,Gerhard Schenk
出处
期刊:International Journal of Biological Macromolecules [Elsevier BV]
卷期号:168: 442-452 被引量:41
标识
DOI:10.1016/j.ijbiomac.2020.12.060
摘要

Processive endoglucanases possess both endo- and exoglucanase activity, making them attractive discovery and engineering targets. Here, a processive endoglucanase EG5C-1 from Bacillus subtilis was employed as the starting point for enzyme engineering. Referring to the complex structure information of EG5C-1 and cellohexaose, the amino acid residues in the active site architecture were identified and subjected to alanine scanning mutagenesis. The residues were chosen for a saturation mutagenesis since their variants showed similar activities to EG5C-1. Variants D70Q and S235W showed increased activity towards the substrates CMC and Avicel, an increase was further enhanced in D70Q/S235W double mutant, which displayed a 2.1- and 1.7-fold improvement in the hydrolytic activity towards CMC and Avicel, respectively. In addition, kinetic measurements showed that double mutant had higher substrate affinity (Km) and a significantly higher catalytic efficiency (kcat/Km). The binding isotherms of wild-type EG5C-1 and double mutant D70Q/S235W suggested that the binding capability of EG5C-1 for the insoluble substrate was weaker than that of D70Q/S235W. Molecular dynamics simulations suggested that the collaborative substitutions of D70Q and S235W altered the hydrogen bonding network within the active site architecture and introduced new hydrogen bonds between the enzyme and cellohexaose, thus enhancing both substrate affinity and catalytic efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快草莓完成签到,获得积分10
1秒前
1秒前
Bella发布了新的文献求助30
2秒前
2秒前
cdpcdpcd17发布了新的文献求助10
3秒前
在水一方应助能干雁凡采纳,获得10
3秒前
liwen完成签到,获得积分10
4秒前
4秒前
koko发布了新的文献求助10
4秒前
华仔应助张静瑶采纳,获得30
4秒前
5秒前
项目多多完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
上官若男应助Choi采纳,获得10
7秒前
7秒前
7秒前
shelly完成签到,获得积分10
7秒前
li发布了新的文献求助10
8秒前
8秒前
Dovy发布了新的文献求助10
8秒前
阿啵呲嘚呃of咯完成签到 ,获得积分10
9秒前
9秒前
10秒前
聪明的云完成签到 ,获得积分10
11秒前
小溪发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
Cjiayi发布了新的文献求助10
12秒前
13秒前
雪白水池发布了新的文献求助10
13秒前
ouo关闭了ouo文献求助
14秒前
14秒前
Lucas应助Choi采纳,获得10
15秒前
15秒前
15秒前
deyu发布了新的文献求助10
16秒前
16秒前
Dovy完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4664065
求助须知:如何正确求助?哪些是违规求助? 4045593
关于积分的说明 12513772
捐赠科研通 3738126
什么是DOI,文献DOI怎么找? 2064331
邀请新用户注册赠送积分活动 1093956
科研通“疑难数据库(出版商)”最低求助积分说明 974499