Flow field tomography with uncertainty quantification using a Bayesian physics-informed neural network

正规化(语言学) 反问题 算法 流量(数学) 不确定度量化 计算机科学 断层摄影术 应用数学 物理 人工智能 数学 机器学习 数学分析 机械 光学
作者
Joseph P. Molnar,Samuel J. Grauer
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (6): 065305-065305 被引量:36
标识
DOI:10.1088/1361-6501/ac5437
摘要

Abstract We report a new approach to flow field tomography that uses the Navier–Stokes and advection–diffusion equations to regularize reconstructions. Tomography is increasingly employed to infer 2D or 3D fluid flow and combustion structures from a series of line-of-sight (LoS) integrated measurements using a wide array of imaging modalities. The high-dimensional flow field is reconstructed from low-dimensional measurements by inverting a projection model that comprises path integrals along each LoS through the region of interest. Regularization techniques are needed to obtain realistic estimates, but current methods rely on truncating an iterative solution or adding a penalty term that is incompatible with the flow physics to varying degrees. Physics-informed neural networks (PINNs) are new tools for inverse analysis that enable regularization of the flow field estimates using the governing physics. We demonstrate how a PINN can be leveraged to reconstruct a 2D flow field from sparse LoS-integrated measurements with no knowledge of the boundary conditions by incorporating the measurement model into the loss function used to train the network. The resulting reconstructions are remarkably superior to reconstructions produced by state-of-the-art algorithms, even when a PINN is used for post-processing. However, as with conventional iterative algorithms, our approach is susceptible to semi-convergence when there is a high level of noise. We address this issue through the use of a Bayesian PINN, which facilitates comprehensive uncertainty quantification of the reconstructions, enables the use of a more intuitive loss function, and reveals the source of semi-convergence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lawgh完成签到,获得积分10
刚刚
刚刚
1秒前
ZZQ完成签到 ,获得积分20
1秒前
Hello应助松大宝采纳,获得10
1秒前
llmmyy发布了新的文献求助10
2秒前
胡思乱想完成签到,获得积分10
2秒前
fengling发布了新的文献求助30
2秒前
2秒前
Doreen完成签到,获得积分10
2秒前
科研通AI5应助霸气馒头采纳,获得10
2秒前
2秒前
luxian应助溪水采纳,获得10
3秒前
张煜发布了新的文献求助10
3秒前
鸡蛋发布了新的文献求助10
3秒前
深情安青应助海洋之心采纳,获得10
3秒前
傲娇诗翠完成签到,获得积分20
3秒前
3秒前
残酷的风完成签到,获得积分10
3秒前
yibaozhangfa应助詹岱周采纳,获得10
3秒前
传统的梦琪完成签到,获得积分10
4秒前
光轮2000完成签到 ,获得积分10
4秒前
人123456完成签到,获得积分10
5秒前
悟空完成签到 ,获得积分10
5秒前
榴莲完成签到,获得积分10
5秒前
5秒前
Bown完成签到,获得积分10
5秒前
傲娇诗翠发布了新的文献求助10
5秒前
苏苏完成签到,获得积分10
6秒前
小二郎应助古鲁蒂采纳,获得10
6秒前
小蘑菇应助清爽幻竹采纳,获得10
6秒前
糖伯虎发布了新的文献求助10
6秒前
隐形曼青应助wei采纳,获得10
7秒前
gaozengxiang完成签到,获得积分10
7秒前
GD88发布了新的文献求助10
8秒前
8秒前
赘婿应助lorentzh采纳,获得10
9秒前
SYLH应助文艺水风采纳,获得20
10秒前
wyt1239012发布了新的文献求助10
10秒前
libra0009发布了新的文献求助10
10秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Research Handbook on Multiculturalism 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848241
求助须知:如何正确求助?哪些是违规求助? 3390972
关于积分的说明 10564569
捐赠科研通 3111340
什么是DOI,文献DOI怎么找? 1714760
邀请新用户注册赠送积分活动 825479
科研通“疑难数据库(出版商)”最低求助积分说明 775550