Automatic CT liver Couinaud segmentation based on key bifurcation detection with attentive residual hourglass-based cascaded network

人工智能 分割 计算机科学 残余物 计算机视觉 钥匙(锁) 点(几何) 图像分割 地标 算法 数学 几何学 计算机安全
作者
Manyang Wang,Renchao Jin,Jiayi Lu,Enmin Song,Guangzhi Ma
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:144: 105363-105363 被引量:5
标识
DOI:10.1016/j.compbiomed.2022.105363
摘要

This paper presents an automatic Couinaud segmentation method based on deep learning of key point detection. Assuming that the liver mask has been extracted, the proposed method can automatically divide the liver into eight anatomical segments according to Couinaud's definition. Firstly, an attentive residual hourglass-based cascaded network (ARH-CNet) is proposed to identify six key bifurcation points of the hepatic vascular system. Subsequently, the detected points are used to derive the planes that divide the liver into different functional units, and the caudate lobe is segmented slice-by-slice based on the circles defined by the detected points. We comprehensively evaluate our method on a public dataset from MICCAI 2018. Experiments firstly demonstrate the effectiveness of our landmark detection network ARH-CNet, which is superior to that of two baseline methods, also robust to noisy data. The average error distance of all predicted key points is 4.68 ± 3.17 mm, and the average accuracy of all points is 90% with the detection error distance of 7 mm. We also verify that summation of the corresponding heat-maps can improve the accuracy of point localization. Furthermore, the overlap-based accuracy and the Dice score of our landmark-derived Couinaud segmentation are respectively 91% and 84%, which are better than the performance of the direct segmentation approach and the traditional plane-based method, thus our method can be regarded as a good alternative for automatic Couinaud segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
3秒前
4秒前
斯文啊斯文完成签到,获得积分10
4秒前
庄庄发布了新的文献求助10
5秒前
千宝完成签到,获得积分10
6秒前
9秒前
fancynancy应助堇年采纳,获得10
10秒前
11秒前
11秒前
13秒前
14秒前
15秒前
16秒前
yuna_yqc完成签到 ,获得积分10
17秒前
英俊的铭应助战斗暴龙兽采纳,获得10
17秒前
科目三应助avaig采纳,获得10
17秒前
李爱国应助王玖采纳,获得10
17秒前
18秒前
18秒前
吃猫的鱼发布了新的文献求助10
21秒前
121212发布了新的文献求助10
21秒前
哇咔咔完成签到 ,获得积分10
21秒前
舒心梦玉发布了新的文献求助10
21秒前
iwaljq发布了新的文献求助10
23秒前
柴胡完成签到,获得积分10
23秒前
renxy完成签到,获得积分20
24秒前
英俊的铭应助TTT0530采纳,获得10
25秒前
25秒前
彭于晏应助庄庄采纳,获得10
28秒前
风清扬发布了新的文献求助10
31秒前
BYW完成签到,获得积分20
33秒前
丘比特应助念安采纳,获得10
34秒前
夜夜发布了新的文献求助10
35秒前
36秒前
qqJing完成签到,获得积分10
37秒前
37秒前
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942848
求助须知:如何正确求助?哪些是违规求助? 3487942
关于积分的说明 11046085
捐赠科研通 3218482
什么是DOI,文献DOI怎么找? 1778969
邀请新用户注册赠送积分活动 864496
科研通“疑难数据库(出版商)”最低求助积分说明 799542