Adaptive and Simultaneous Trajectory Prediction for Heterogeneous Agents via Transferable Hierarchical Transformer Network

计算机科学 弹道 人工智能 机器学习 变压器 稳健性(进化) 数据挖掘 工程类 生物化学 化学 物理 天文 电压 电气工程 基因
作者
Maosi Geng,Junyi Li,Chuangjia Li,Ningke Xie,Xiqun Chen,Der‐Horng Lee
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (10): 11479-11492 被引量:6
标识
DOI:10.1109/tits.2023.3276946
摘要

Simultaneously and accurately predicting trajectories of multiple heterogeneous agents is crucial for intelligent transportation systems (ITS) applications, e.g., connected and autonomous vehicles. Existing model-based and data-driven methods can achieve good prediction accuracy, but most of them neglect the domain shift issue and prevalent imperfect data problems, i.e., few-shot learning and zero-shot learning issues. To address these issues, we propose a multi-source transfer learning (TL) framework, transferable hierarchical Siamese Transformer network (T-HSTN), for trajectory prediction of multiple heterogeneous agents, e.g., vehicles, bicycles, and pedestrians, at urban unsignalized intersections under small data conditions. Specifically, by extending the self-attention mechanism and exploring feature representations of traffic scenes, a Transformer-based network that hierarchically extracts temporal/spatial features and map features is introduced as the basic prediction model. Moreover, a TL framework with adaptive learning and feature alignment modules is built to explore the feature representations of unfixed traffic scenes and align both statistical and deep features to learn domain-invariant knowledge. More challenging trajectory prediction experiments are designed, corresponding to newly-built or badly-instrumented intersections under real-world scenarios. Experimental results verify the proposed method's high accuracy, transferability, and generability. Our work fills the gap in solutions and benchmarks for TL tasks in trajectory prediction for heterogeneous agents. The conducted TL experiments provide a more practical setting of considering imperfect data problems in trajectory prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高高亦竹发布了新的文献求助10
1秒前
1秒前
宫年完成签到,获得积分10
2秒前
陈宇蛟完成签到,获得积分10
2秒前
px发布了新的文献求助10
4秒前
大白完成签到,获得积分10
5秒前
陌陌发布了新的文献求助10
5秒前
6秒前
陈育晗发布了新的文献求助10
6秒前
宫年发布了新的文献求助10
9秒前
11秒前
LLLLLJJXX发布了新的文献求助10
12秒前
田様应助高高亦竹采纳,获得30
13秒前
迷路的夏之完成签到,获得积分10
14秒前
彭于晏应助洛神采纳,获得10
15秒前
px发布了新的文献求助10
16秒前
17秒前
lzy发布了新的文献求助10
18秒前
飘逸的麦片完成签到,获得积分10
19秒前
大力的飞鸟完成签到,获得积分10
20秒前
狗头发布了新的文献求助20
21秒前
缓慢寻云完成签到 ,获得积分10
21秒前
22秒前
22秒前
orixero应助nishangjnh采纳,获得10
23秒前
载尘完成签到 ,获得积分10
24秒前
gstaihn发布了新的文献求助10
27秒前
27秒前
NEO完成签到 ,获得积分10
27秒前
28秒前
深情安青应助lzy采纳,获得10
29秒前
nieinei完成签到 ,获得积分10
30秒前
JamesPei应助wop111采纳,获得10
32秒前
Owen应助狗头采纳,获得10
33秒前
刻苦的溪流完成签到,获得积分10
34秒前
争气发布了新的文献求助10
35秒前
自觉的草莓完成签到 ,获得积分10
37秒前
秦苏箐完成签到 ,获得积分10
38秒前
JamesPei应助Yang采纳,获得10
38秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5214799
求助须知:如何正确求助?哪些是违规求助? 4390207
关于积分的说明 13669062
捐赠科研通 4251679
什么是DOI,文献DOI怎么找? 2332831
邀请新用户注册赠送积分活动 1330435
关于科研通互助平台的介绍 1284189