The added value of deep learning to submaximal exercise electrocardiogram for the 10-year prediction of major adverse cardiovascular and cerebrovascular events

医学 心脏病学 内科学 价值(数学) 机器学习 计算机科学
作者
A Sturge,Stefan van Duijvenboden,Charlie Harper,Barbara Casadei,Aiden Doherty
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.3496
摘要

Abstract Background The added value of exercise ECG data to traditional risk factors in predicting cardiovascular events remains unclear. Deep learning of ECG signals has demonstrated state-of-the-art performance in detecting subtle abnormalities indicative of cardiovascular disease. We investigated whether deep learning analysis of exercise ECGs could improve the prediction of major cardiovascular and cerebrovascular events (MACCE) with respect to established risk models in a large population-based cohort. Purpose To assess the added value of submaximal exercise ECG measurements to established cardiovascular risk prediction models. Methods We obtained ECG recordings from 41,076 UK Biobank participants without cardiovascular disease (CVD) who underwent a submaximal exercise ECG test. We obtained ECG recordings from 41,076 UK Biobank participants without cardiovascular disease (CVD) who underwent a submaximal exercise ECG test. We created two deep neural network ECG risk scores: one derived from conventional ECG parameters, measured at rest, peak exercise and late-stage recovery, and another based on the complete ECG (Q-ECG). We assessed the added value of conventional ECG parameters and Q-ECG risk scores to the UK's current prediction algorithm (QRISK3). We estimate the association between ECG parameters and MACCE, using Cox Proportional hazard models, following adjustment for traditional risk factors. All models were internally validated via 5-fold cross-validation and 1000 bootstrap iterations. Predictive performance was evaluated using Harrel's C-index, Net Reclassification Index (NRI) and net benefit. Findings: Incident MACCE was reported in 4,082 (9.9%) individuals in the study population and 3,463(9.7%) individuals with valid ECG parameters over a median follow-up period of 12.5 years. We found combined conventional ECG and Q-ECG scores were independently associated with MACCE, following adjustment for multiple testing: adjusted hazard ratio [HZ] = 1.76 (95% CI:1.63-1.91); HZ = 1.14 (95% CI:1.10-1.18), respectively, per standard deviation increase. Both conventional ECG parameters and Q-ECG were predictive of MACCE, independent of clinical risk factors, C-index = 0.64 (95%CI 0.63-0.65); net benefit = 0.09(95% CI 0.07 - 0.11) and C-index = 0.56 (95% CI 0.55-0.57); net benefit = 0.07(95% CI 0.05 - 0.09). ECG measurement's modestly improved model discrimination over the bassline QRISK3 risk score when combined with QRISK3 risk factors for conventional markers and Q-ECG score, respectively; ΔC-index 0.03 (95% CI: 0.02 – 0.04) and ΔC-index 0.03 (95% CI: 0.02 – 0.03); However, we observed no significant improvements in classification at the current recommended threshold of 10%. Conclusion In individuals without a history of prior cardiovascular disease, ECG measures independently predict the risk of MACCE. When combined with QRISK3, neural-network-derived ECG risk scores marginally improve cardiovascular risk prediction over QRISK3.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅斟低唱发布了新的文献求助10
刚刚
刚刚
刚刚
2秒前
李爱国应助XJLQAQ采纳,获得10
3秒前
Owen应助pojian采纳,获得10
3秒前
王珩安发布了新的文献求助10
3秒前
杜杨帆发布了新的文献求助10
3秒前
4秒前
风清扬应助Hoho啊采纳,获得30
4秒前
科研小牛完成签到,获得积分10
5秒前
易殇发布了新的文献求助10
5秒前
renheit发布了新的文献求助10
7秒前
英俊的铭应助dd采纳,获得10
9秒前
9秒前
aixiaoming0503完成签到,获得积分10
10秒前
Future完成签到,获得积分20
11秒前
洁净的惜筠应助wshwx采纳,获得10
13秒前
14秒前
MY发布了新的文献求助10
14秒前
今后应助lmmorz采纳,获得10
14秒前
Hoho啊完成签到,获得积分10
15秒前
香蕉觅云应助aaa采纳,获得10
15秒前
haoryan完成签到,获得积分10
16秒前
Orange应助易殇采纳,获得10
16秒前
17秒前
所所应助THEO采纳,获得10
18秒前
19秒前
可耐的如萱完成签到 ,获得积分10
20秒前
haoryan发布了新的文献求助10
21秒前
21秒前
天天向上完成签到 ,获得积分10
21秒前
22秒前
nanxu发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
Thea发布了新的文献求助10
25秒前
26秒前
炫酷火锅完成签到,获得积分10
26秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4109721
求助须知:如何正确求助?哪些是违规求助? 3648056
关于积分的说明 11555522
捐赠科研通 3353801
什么是DOI,文献DOI怎么找? 1842442
邀请新用户注册赠送积分活动 908829
科研通“疑难数据库(出版商)”最低求助积分说明 825745