A comprehensive investigation of multimodal deep learning fusion strategies for breast cancer classification

计算机科学 人工智能 乳腺癌 深度学习 融合 机器学习 癌症 医学 内科学 语言学 哲学
作者
Fatima-Zahrae Nakach,Ali Idri,Evgin Göçeri
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:57 (12) 被引量:16
标识
DOI:10.1007/s10462-024-10984-z
摘要

In breast cancer research, diverse data types and formats, such as radiological images, clinical records, histological data, and expression analysis, are employed. Given the intricate nature of natural phenomena, relying on the features of a single modality is seldom sufficient for comprehensive analysis. Therefore, it is possible to guarantee medical relevance and achieve improved clinical outcomes by combining several modalities. The presen study carefully maps and reviews 47 primary articles from six well-known digital libraries that were published between 2018 and 2023 for breast cancer classification based on multimodal deep learning fusion (MDLF) techniques. This systematic literature review encompasses various aspects, including the medical modalities combined, the datasets utilized in these studies, the techniques, models, and architectures used in MDLF and it also discusses the advantages and limitations of each approach. The analysis of selected papers has revealed a compelling trend: the emergence of new modalities and combinations that were previously unexplored in the context of breast cancer classification. This exploration has not only expanded the scope of predictive models but also introduced fresh perspectives for addressing diverse targets, ranging from screening to diagnosis and prognosis. The practical advantages of MDLF are evident in its ability to enhance the predictive capabilities of machine learning models, resulting in improved accuracy across diverse applications. The prevalence of deep learning models underscores their success in autonomously discerning complex patterns, offering a substantial departure from traditional machine learning approaches. Furthermore, the paper explores the challenges and future directions in this field, including the need for larger datasets, the use of ensemble learning methods, and the interpretation of multimodal models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助科研通管家采纳,获得50
刚刚
斯文败类应助科研通管家采纳,获得20
1秒前
1秒前
SYLH应助科研通管家采纳,获得30
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
harmy发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
慕青应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
ding应助安琪琪采纳,获得10
1秒前
2秒前
Jasper应助努力退休小博士采纳,获得10
2秒前
畅快的雪柳完成签到 ,获得积分10
2秒前
santiago发布了新的文献求助10
2秒前
4秒前
aprilvanilla发布了新的文献求助10
4秒前
5秒前
慈祥的鸣凤完成签到 ,获得积分10
6秒前
青子完成签到 ,获得积分10
6秒前
ED应助支雨泽采纳,获得10
6秒前
搜集达人应助优秀的服饰采纳,获得10
7秒前
跳跃尔琴发布了新的文献求助10
7秒前
纸张猫猫给纸张猫猫的求助进行了留言
7秒前
黄茹薇发布了新的文献求助10
9秒前
DaYongDan完成签到 ,获得积分10
9秒前
坦率完成签到,获得积分10
10秒前
笨笨翰发布了新的文献求助10
11秒前
王颖完成签到,获得积分10
11秒前
11秒前
爆米花应助甜甜采纳,获得10
14秒前
跳跃梦松完成签到,获得积分10
14秒前
15秒前
吮指鸡发布了新的文献求助10
16秒前
跳跃尔琴发布了新的文献求助10
17秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3893239
求助须知:如何正确求助?哪些是违规求助? 3436148
关于积分的说明 10798202
捐赠科研通 3161630
什么是DOI,文献DOI怎么找? 1746117
邀请新用户注册赠送积分活动 843243
科研通“疑难数据库(出版商)”最低求助积分说明 787141