Confluence of Electronic Structure Calculations (DFT) and Machine Learning (ML) for Lithium and Sodium-Ion Batteries: ATheoretical Perspective

电池(电) 锂(药物) 储能 化学 纳米技术 工程类 电气工程 材料科学 物理 功率(物理) 热力学 医学 内分泌学
作者
Henu Sharma,Vinay Katari,Κ. K. Sahu,Anjali Singh
出处
期刊:Engineering research express [IOP Publishing]
卷期号:6 (3): 032002-032002 被引量:2
标识
DOI:10.1088/2631-8695/ad708f
摘要

Abstract The world is rapidly transitioning towards clean energy solutions, and batteries are the key drivers of this transition. With increasing demand for large-scale energy storage systems, the need for cost-effective and sustainable battery storage systems is also increasing. Until now, lithium-ion batteries have completely dominated the commercial rechargeable battery storage space. Due to sodium’s greater affordability and abundance compared to lithium, sodium-ion batteries have drawn interest as a complementary technology to lithium-ion batteries in various applications, like grid storage devices. First-principles studies are often used today to effectively study the key properties of alkali-ion batteries that are difficult to access otherwise, such as the electronic structure effects, ion diffusivity, and quantitative comparison with experiments, to name a few. Understanding the electronic structure of battery materials can help researchers design more efficient and longer-lasting batteries. Recently, machine learning (ML) approaches have emerged as a very attractive tool both for prediction (forward) problems as well as design (or inverse) problems. Dramatic reductions in computational costs, coupled with the rapid development of ML tools in general and deep learning methods in particular, have kindled keen interest. This is so because they can supplement the traditional experimental, theoretical, and computational tools to significantly augment the quest for rapid development and deployment of new products. Furthermore, the integration of electronic structure calculations and ML benefits society by accelerating the development at considerably lower costs for more efficient and sustainable batteries, which can lead to longer-lasting portable devices, cleaner energy storage solutions, and lower environmental impact. This topical review article will focus on how density functional theory (DFT) and ML can facilitate Li-ion and Na-ion battery research via material discovery, rapid screening, and tuning of the electrode properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
allezallez完成签到,获得积分10
刚刚
1秒前
orixero应助fywz采纳,获得30
1秒前
三石完成签到,获得积分10
1秒前
Hello应助cc采纳,获得10
2秒前
Oooner完成签到,获得积分10
2秒前
4秒前
4秒前
DueDue0327发布了新的文献求助20
4秒前
传奇3应助ting5260采纳,获得10
4秒前
大佬完成签到,获得积分10
4秒前
5秒前
5秒前
快快显灵完成签到,获得积分10
5秒前
5秒前
科研通AI6应助WXL采纳,获得30
6秒前
体验发布了新的文献求助10
6秒前
6秒前
PAUL完成签到,获得积分10
7秒前
lm2567完成签到 ,获得积分10
7秒前
7秒前
8秒前
CNS999发布了新的文献求助10
9秒前
9秒前
星梦完成签到,获得积分10
9秒前
萝卜完成签到,获得积分10
9秒前
丘比特应助笑点低嵩采纳,获得10
9秒前
天真如松发布了新的文献求助10
9秒前
一米八发布了新的文献求助20
10秒前
10秒前
zlx发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
极品小亮完成签到,获得积分10
11秒前
罗马发布了新的文献求助10
12秒前
萝卜发布了新的文献求助10
12秒前
小椰发布了新的文献求助10
12秒前
苗明超发布了新的文献求助10
13秒前
整齐的飞兰完成签到 ,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5403730
求助须知:如何正确求助?哪些是违规求助? 4522356
关于积分的说明 14088619
捐赠科研通 4436155
什么是DOI,文献DOI怎么找? 2434938
邀请新用户注册赠送积分活动 1427179
关于科研通互助平台的介绍 1405746