Redefining retinal vessel segmentation: empowering advanced fundus image analysis with the potential of GANs

计算机科学 分割 人工智能 眼底(子宫) 深度学习 视网膜 网络体系结构 编码器 图像分割 灵敏度(控制系统) 计算机视觉 模式识别(心理学) 眼科 化学 工程类 操作系统 医学 生物化学 计算机安全 电子工程
作者
Badar Almarri,B. Naveen Kumar,H. Pai,Surbhi Bhatia,Fatima Asiri,T R Mahesh
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:11: 1470941-1470941 被引量:9
标识
DOI:10.3389/fmed.2024.1470941
摘要

Retinal vessel segmentation is a critical task in fundus image analysis, providing essential insights for diagnosing various retinal diseases. In recent years, deep learning (DL) techniques, particularly Generative Adversarial Networks (GANs), have garnered significant attention for their potential to enhance medical image analysis. This paper presents a novel approach for retinal vessel segmentation by harnessing the capabilities of GANs. Our method, termed GANVesselNet, employs a specialized GAN architecture tailored to the intricacies of retinal vessel structures. In GANVesselNet, a dual-path network architecture is employed, featuring an Auto Encoder-Decoder (AED) pathway and a UNet-inspired pathway. This unique combination enables the network to efficiently capture multi-scale contextual information, improving the accuracy of vessel segmentation. Through extensive experimentation on publicly available retinal datasets, including STARE and DRIVE, GANVesselNet demonstrates remarkable performance compared to traditional methods and state-of-the-art deep learning approaches. The proposed GANVesselNet exhibits superior sensitivity (0.8174), specificity (0.9862), and accuracy (0.9827) in segmenting retinal vessels on the STARE dataset, and achieves commendable results on the DRIVE dataset with sensitivity (0.7834), specificity (0.9846), and accuracy (0.9709). Notably, GANVesselNet achieves remarkable performance on previously unseen data, underscoring its potential for real-world clinical applications. Furthermore, we present qualitative visualizations of the generated vessel segmentations, illustrating the network’s proficiency in accurately delineating retinal vessels. In summary, this paper introduces GANVesselNet, a novel and powerful approach for retinal vessel segmentation. By capitalizing on the advanced capabilities of GANs and incorporating a tailored network architecture, GANVesselNet offers a quantum leap in retinal vessel segmentation accuracy, opening new avenues for enhanced fundus image analysis and improved clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助帅气的老五采纳,获得10
1秒前
1秒前
haixin完成签到,获得积分10
1秒前
BugWriter完成签到,获得积分10
2秒前
2秒前
Rookie99完成签到,获得积分10
3秒前
3秒前
tyj完成签到,获得积分10
4秒前
飞快的冰淇淋完成签到 ,获得积分10
4秒前
4秒前
WXK@945完成签到,获得积分10
5秒前
ant完成签到,获得积分10
6秒前
Darline完成签到 ,获得积分10
6秒前
七人七发布了新的文献求助10
6秒前
liwen完成签到,获得积分10
7秒前
7秒前
Sissi完成签到,获得积分10
7秒前
kkfly完成签到,获得积分10
7秒前
8秒前
8秒前
万能图书馆应助Danyang采纳,获得10
8秒前
LIN完成签到,获得积分10
8秒前
于yu完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
淡定的冰蓝完成签到 ,获得积分10
9秒前
任性的岱周完成签到,获得积分10
9秒前
爱库珀完成签到,获得积分10
9秒前
英勇羿发布了新的文献求助10
9秒前
10秒前
顾矜应助樊川采纳,获得10
10秒前
瑞rui完成签到 ,获得积分10
10秒前
gexzygg应助勤奋采纳,获得10
10秒前
Freya完成签到,获得积分10
10秒前
搞怪的归尘完成签到,获得积分10
11秒前
Mikey发布了新的文献求助10
11秒前
哎呦喂发布了新的文献求助10
11秒前
可靠的纸鹤完成签到,获得积分10
12秒前
科研通AI6应助nichen采纳,获得10
12秒前
健忘完成签到,获得积分10
12秒前
小胖完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549933
求助须知:如何正确求助?哪些是违规求助? 4634950
关于积分的说明 14636552
捐赠科研通 4576716
什么是DOI,文献DOI怎么找? 2509866
邀请新用户注册赠送积分活动 1485601
关于科研通互助平台的介绍 1457017