Combining KAN with CNN: KonvNeXt's Performance in Remote Sensing and Patent Insights

计算机科学 专利分析 人工智能 模式识别(心理学) 数据科学
作者
Minjong Cheon,Changbae Mun
标识
DOI:10.20944/preprints202407.0663.v1
摘要

The rapid advancements in satellite technology have led to a significant increase in high-resolution remote sensing (RS) images, necessitating advanced processing methods. Additionally, a patent analysis revealed a significant increase in deep learning and machine learning applications in remote sensing, highlighting the growing importance of these technologies. Therefore, this paper introduces the Kolmogorov-Arnold Network (KAN) model to remote sensing, aiming to enhance efficiency and performance in RS applications. We conducted several experiments to validate KAN's applicability, starting with the EuroSAT dataset, where we combined the KAN layer with multiple pretrained CNN models. The optimal performance was achieved with ConvNeXt, leading to the development of the KonvNeXt model. KonvNeXt was evaluated on the Optimal-31, AID, and Merced datasets for validation, and it achieved accuracies of 90.59%, 94.1%, and 98.1%, respectively. The model also showed fast processing speed, with the Optimal-31 and Merced datasets completed in 107.63 seconds each, while the bigger and more complicated AID dataset took 545.91 seconds. This result is meaningful since it achieved faster speeds and comparable accuracy compared to the existing study which utilized VIT and proved KonvNeXt's applicability for remote sensing classification tasks. Furthermore, we investigated the model's interpretability by utilizing Occlusion Sensitivity and by displaying the influential regions, it validated its potential use in a variety of domains including medical imaging and weather forecasting. This paper is meaningful in that it is the first use of KAN in remote sensing classification, proving its adaptability and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助单耳元采纳,获得10
1秒前
1秒前
FashionBoy应助勤劳的雨文采纳,获得10
1秒前
我是老大应助zzt采纳,获得10
1秒前
MHY发布了新的文献求助10
4秒前
娇气的妙之完成签到,获得积分10
4秒前
打打应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
星辰大海应助科研通管家采纳,获得30
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
5秒前
QAQ发布了新的文献求助10
6秒前
华仔应助renzhiqiang采纳,获得10
7秒前
overThat完成签到,获得积分10
7秒前
Kevin完成签到,获得积分10
7秒前
彩色草莓发布了新的文献求助10
7秒前
贺英发布了新的文献求助20
8秒前
10秒前
12秒前
yibo完成签到,获得积分10
12秒前
玩命的十三完成签到 ,获得积分10
13秒前
汉堡包应助天真乌冬面采纳,获得10
14秒前
单耳元发布了新的文献求助10
15秒前
江峰发布了新的文献求助10
17秒前
20秒前
爆米花应助博修采纳,获得30
20秒前
21秒前
23秒前
来ll完成签到,获得积分10
24秒前
24秒前
Dannnn发布了新的文献求助10
25秒前
蓝色发布了新的文献求助10
27秒前
Owen应助滴滴滴采纳,获得10
28秒前
汉堡包应助来ll采纳,获得10
28秒前
29秒前
万能图书馆应助江峰采纳,获得10
29秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799143
求助须知:如何正确求助?哪些是违规求助? 3344848
关于积分的说明 10321712
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680119
邀请新用户注册赠送积分活动 806904
科研通“疑难数据库(出版商)”最低求助积分说明 763445