Portable electronic nose system with elastic architecture and fault tolerance based on edge computing, ensemble learning, and sensor swarm

电子鼻 微控制器 计算机科学 分类器(UML) 人工神经网络 人工智能 群体行为 传感器阵列 GSM演进的增强数据速率 容错 模式识别(心理学) 实时计算 嵌入式系统 机器学习 分布式计算
作者
Tao Wang,Yu Wu,Yong‐Wei Zhang,Wen Lv,Xiyu Chen,Min Zeng,Jianhua Yang,Yanjie Su,Nantao Hu,Zhi Yang
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:375: 132925-132925 被引量:37
标识
DOI:10.1016/j.snb.2022.132925
摘要

The portable electronic nose (E-nose) systems are suffering from the limited computing ability of microcontrollers and can only adopt simple pattern recognition algorithms. The heavy coupling between the sensors greatly limits the anti-fault ability of the system. Herein, a novel ensemble learning framework based on independent artificial neural networks (ANN) is proposed in a portable E-nose system to recognize volatile organic compounds (VOCs). Edge computing is applied to complete data processing and analysis on an ARM Cortex-M3 based microcontroller in an E-nose system. Each sensing unit can recognize VOCs by training independent ANN models. Then an ensemble learning method further organizes the diverse ANN models into an onboard sensor swarm with a significantly enhanced performance. The accuracy of the type classification can reach 81.1%, which is improved by more than 20% compared with the best individual classifier. The R2 score of concentration prediction can reach 84.1%, which is improved by more than 25% compared with the best regressor in the ensemble group. For both type identification and concentration prediction, the tolerance to the sensor faults of swarm-based E-nose is 10 and 18 times greater than that of the conventional array-based sensors, respectively. Our work has designed an elastic architecture based on sensor swarms, providing a novel avenue for the development of E-nose systems with high fault tolerance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
爆米花应助Ancestor采纳,获得10
2秒前
3秒前
th完成签到,获得积分10
3秒前
4秒前
现代的青荷完成签到,获得积分10
4秒前
5秒前
俏皮火完成签到 ,获得积分10
8秒前
汪礼艳发布了新的文献求助10
9秒前
9秒前
12秒前
14秒前
15秒前
zzk发布了新的文献求助10
15秒前
汪礼艳完成签到,获得积分10
16秒前
16秒前
16秒前
三岔路口完成签到,获得积分10
17秒前
huco完成签到,获得积分10
18秒前
AFong发布了新的文献求助30
22秒前
zzk完成签到,获得积分10
22秒前
子凡应助柔之采纳,获得10
22秒前
橘子完成签到,获得积分10
23秒前
JamesPei应助朱安南采纳,获得10
25秒前
zhibaishouhei完成签到,获得积分20
26秒前
依旧完成签到,获得积分10
28秒前
29秒前
汉堡包应助科研通管家采纳,获得10
29秒前
深情安青应助科研通管家采纳,获得10
29秒前
打打应助科研通管家采纳,获得10
29秒前
慕青应助科研通管家采纳,获得10
29秒前
Lucas应助科研通管家采纳,获得10
29秒前
爆米花应助科研通管家采纳,获得10
29秒前
充电宝应助科研通管家采纳,获得10
29秒前
香蕉觅云应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
妙高台发布了新的文献求助40
30秒前
可爱的函函应助jxx采纳,获得10
31秒前
热情孤丹发布了新的文献求助10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778351
求助须知:如何正确求助?哪些是违规求助? 3323953
关于积分的说明 10216860
捐赠科研通 3039279
什么是DOI,文献DOI怎么找? 1667919
邀请新用户注册赠送积分活动 798427
科研通“疑难数据库(出版商)”最低求助积分说明 758385