Development of a Machine-Learning Model for Prediction of Extubation Failure in Patients with Difficult Airways after General Anesthesia of Head, Neck, and Maxillofacial Surgeries

医学 逻辑回归 气道 逐步回归 入射(几何) 外科 麻醉 内科学 物理 光学
作者
Huimin Huang,Jiayi Wang,Ying Zhu,Jin‐Xing Liu,Shaobai Wang,Wei Shi,Wenyue Hu,Yi Ding,Runhua Zhou,Hong Jiang
出处
期刊:Journal of Clinical Medicine [Multidisciplinary Digital Publishing Institute]
卷期号:12 (3): 1066-1066 被引量:1
标识
DOI:10.3390/jcm12031066
摘要

(1) Background: Extubation failure after general anesthesia is significantly associated with morbidity and mortality. The risk of a difficult airway after the general anesthesia of head, neck, and maxillofacial surgeries is significantly higher than that after general surgery, increasing the incidence of extubation failure. This study aimed to develop a multivariable prediction model based on a supervised machine-learning algorithm to predict extubation failure in adult patients after head, neck, and maxillofacial surgeries. (2) Methods: A single-center retrospective study was conducted in adult patients who underwent head, neck, and maxillofacial general anesthesia between July 2015 and July 2022 at the Shanghai Ninth People's Hospital. The primary outcome was extubation failure after general anesthesia. The dataset was divided into training (70%) and final test sets (30%). A five-fold cross-validation was conducted in the training set to reduce bias caused by the randomly divided dataset. Clinical data related to extubation failure were collected and a stepwise logistic regression was performed to screen out the key features. Six machine-learning methods were introduced for modeling, including random forest (RF), k-nearest neighbor (KNN), logistic regression (LOG), support vector machine (SVM), extreme gradient boosting (XGB), and optical gradient boosting machine (GBM). The best performance model in the first cross-validation dataset was further optimized and the final performance was assessed using the final test set. (3) Results: In total, 89,279 patients over seven years were reviewed. Extubation failure occurred in 77 patients. Next, 186 patients with a successful extubation were screened as the control group according to the surgery type for patients with extubation failure. Based on the stepwise regression, seven variables were screened for subsequent analysis. After training, SVM and LOG models showed better prediction ability. In the k-fold dataset, the area under the curve using SVM and LOG were 0.74 (95% confidence interval, 0.55-0.93) and 0.71 (95% confidence interval, 0.59-0.82), respectively, in the k-fold dataset. (4) Conclusion: Applying our machine-learning model to predict extubation failure after general anesthesia in clinical practice might help to reduce morbidity and mortality of patients with difficult airways after head, neck, and maxillofacial surgeries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助尹尹尹采纳,获得10
刚刚
杪春完成签到 ,获得积分10
刚刚
pian完成签到,获得积分10
1秒前
固态完成签到,获得积分10
1秒前
Crystal完成签到,获得积分10
2秒前
充电宝应助经海亦采纳,获得10
2秒前
hanzhipad给LSY28的求助进行了留言
2秒前
打打应助和尘同光采纳,获得10
3秒前
3秒前
共享精神应助Estrella采纳,获得100
4秒前
5秒前
打打应助杨向成采纳,获得10
5秒前
传奇3应助罐头采纳,获得10
5秒前
秋秋很困完成签到,获得积分10
5秒前
5秒前
科研通AI5应助庄周采纳,获得10
6秒前
lqiqivv完成签到,获得积分10
6秒前
7秒前
天天快乐应助葳蕤苍生采纳,获得10
7秒前
9秒前
Phil发布了新的文献求助10
9秒前
10秒前
Non0发布了新的文献求助10
10秒前
Cherish应助Gentle采纳,获得10
10秒前
10秒前
lqiqivv发布了新的文献求助10
10秒前
ding应助lty001采纳,获得10
11秒前
凝聚态阿隅完成签到,获得积分10
11秒前
naturehome发布了新的文献求助10
12秒前
13秒前
13秒前
15秒前
大学生发布了新的文献求助10
16秒前
南雨完成签到 ,获得积分10
16秒前
Henry发布了新的文献求助10
17秒前
18秒前
符双双完成签到 ,获得积分10
18秒前
开朗早晨完成签到,获得积分10
18秒前
lty001完成签到,获得积分10
18秒前
Phil完成签到,获得积分10
19秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
TM 5-855-1(Fundamentals of protective design for conventional weapons) 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826219
求助须知:如何正确求助?哪些是违规求助? 3368652
关于积分的说明 10451479
捐赠科研通 3087997
什么是DOI,文献DOI怎么找? 1698916
邀请新用户注册赠送积分活动 817190
科研通“疑难数据库(出版商)”最低求助积分说明 770065