Comparing traditional and AI-enhanced strategies for developing patient decision aids: a multiple case study

作者
Anik Giguère,Delphine Auclair-Rochon,M. Robin,Lidiya Augustine,Julie Ayre
出处
期刊:BMJ evidence-based medicine [BMJ]
卷期号:: bmjebm-2025
标识
DOI:10.1136/bmjebm-2025-113675
摘要

Objectives Our objective was to develop and test prompts designed to generate balanced, evidence-based information from artificial intelligence (AI) for the development of patient decision aid (DA) content. We compared the outputs of this AI-enhanced strategy with those produced by an experienced human team using a traditional development approach. Methods We conducted a comparative, mixed-methods, multiple-case study, with each case being a DA. Eight DAs were randomly selected from the Ottawa Inventory, stratified by author type (commercial, academic, public institution, professional association). We then followed a systematic process involving two researchers working independently. One researcher described the topics of the selected DAs and extracted their content by listing the available options with their benefits and harms. The other researcher—blind to the DA—used the topic description to generate AI-enhanced DA content by iteratively refining the prompt structures based on the International Patient Decision Aids Standards until the generated content stabilised. Quantitative analyses compared the number of options, benefits and harms generated by the traditional and AI-enhanced strategies, while qualitative analyses examined the differences in content. Results The selected DAs targeted different populations (older adults, women, the general population, children) and were produced in Canada, the UK, the USA or Australia. One type of DA (n=6) focused on a specific option (eg, whether to get vaccinated against COVID-19), the other (n=2) focused on improving an outcome (eg, treating attention-deficit/hyperactivity disorder symptoms). For option-focused DAs, 66% of the benefits/harms were generated by the AI-enhanced strategy only and 6.2% by the traditional strategy only. For outcome-focused DAs, 47% of the options were generated by the AI-enhanced strategy only, and 4% by the traditional strategy only. An evidence search confirmed that the options generated only by the AI-enhanced strategy were indeed beneficial, ruling out hallucinations. However, the AI-enhanced strategy did not suggest optimal combinations. Qualitative analysis showed that AI-enhanced content was generally richer. Conclusions This study provides practical guidance on leveraging AI to improve the efficiency of DA development and improve their quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aldehyde应助别吃我蛋糕采纳,获得10
刚刚
1秒前
feimengxia完成签到 ,获得积分10
1秒前
jianglili完成签到,获得积分10
2秒前
3秒前
致秋相府君完成签到,获得积分10
3秒前
qqqqqqqqqqq完成签到,获得积分10
3秒前
shaonianliang发布了新的文献求助10
4秒前
5秒前
huan完成签到,获得积分10
5秒前
王秀秀发布了新的文献求助10
6秒前
zhuyutian发布了新的文献求助10
7秒前
8秒前
王宝强的滴滴完成签到,获得积分10
10秒前
Lucas应助活泼飞柏采纳,获得10
10秒前
所所应助123采纳,获得10
11秒前
1234发布了新的文献求助10
12秒前
scjgf完成签到 ,获得积分10
14秒前
任伟超发布了新的文献求助10
14秒前
2150号完成签到,获得积分10
14秒前
15秒前
17秒前
sunguoyi发布了新的文献求助10
19秒前
锅巴发布了新的文献求助10
20秒前
LA完成签到 ,获得积分10
20秒前
独特的绯完成签到,获得积分10
21秒前
香蕉觅云应助suini123采纳,获得10
22秒前
23秒前
AAA完成签到,获得积分10
24秒前
Akim应助NE采纳,获得10
24秒前
张三完成签到,获得积分10
24秒前
脑洞疼应助任伟超采纳,获得10
25秒前
安静一曲完成签到 ,获得积分10
27秒前
毛毛发布了新的文献求助10
27秒前
爆米花应助独特的绯采纳,获得10
27秒前
科小白完成签到 ,获得积分10
27秒前
直率笑槐发布了新的文献求助10
28秒前
28秒前
静水流深完成签到,获得积分10
29秒前
在水一方应助1234采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298335
求助须知:如何正确求助?哪些是违规求助? 4446911
关于积分的说明 13840905
捐赠科研通 4332290
什么是DOI,文献DOI怎么找? 2378093
邀请新用户注册赠送积分活动 1373358
关于科研通互助平台的介绍 1338939