神经形态工程学
材料科学
双模
光电子学
模式(计算机接口)
建筑
对偶(语法数字)
计算机体系结构
纳米技术
计算机科学
人工智能
电子工程
人工神经网络
人机交互
工程类
艺术
文学类
视觉艺术
作者
Zhilin Zhu,Jie Wang,Xinyang Wang,Shaowei Wang,Can Fu,Lin‐Bao Luo
标识
DOI:10.1002/adom.202502311
摘要
Abstract To overcome the intrinsic separation between sensing and computing in artificial intelligence vision systems, this study introduces a dual‐mode PbS/InP heterojunction photodetector that enables hardware‐level integration of photoelectric imaging and neuromorphic computing. In Mode 1, the device delivers a broadband spectral response (340–970 nm), high sensitivity (0.373 A W −1 at 870 nm), and precise 16 × 16‐pixel optical imaging of Chinese characters. In Mode 2, it reproduces synaptic behavior via photoelectric reservoir computing combined with a convolutional neural network, achieving 99.5% accuracy in Chinese radical classification and 97.1% in multi‐component character decomposition. Leveraging hardware system integration, a character‐component‐based recognition framework is developed that enhances pixel density for text recognition by 6.4‐fold, achieving 256 PPI. These results lay the foundation for multimodal artificial vision systems, with scalable potential through array expansion and integration with spiking neural networks.
科研通智能强力驱动
Strongly Powered by AbleSci AI