Interactive Generative Adversarial Networks with High-Frequency Compensation for Facial Attribute Editing

计算机科学 对抗制 生成语法 人工智能 补偿(心理学) 语音识别 图像编辑 图像(数学) 心理学 精神分析
作者
Wenmin Huang,Weiqi Luo,Xiaochun Cao,Jiwu Huang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (9): 8215-8229
标识
DOI:10.1109/tcsvt.2024.3391348
摘要

Recently, facial attribute editing has drawn increasing attention and has achieved significant progress due to Generative Adversarial Network (GAN). Since paired images before and after editing are not available, existing methods typically perform the editing and reconstruction tasks simultaneously, and transfer facial details learned from the reconstruction to the editing via sharing the latent representation space and weights. In this way, they can not preserve those non-targeted regions well during editing. In addition, they usually introduce skip connections between the encoder and decoder to improve image quality at the cost of attribute editing ability. In this paper, we propose a novel method called InterGAN with high-frequency compensation to alleviate above problems. Specifically, we first propose the cross-task interaction (CTI) to fully explore the relationships between editing and reconstruction tasks. The CTI includes two translations: style translation adjusts the mean and variance of feature maps according to style features, and conditional translation utilizes attribute vector as condition to guide feature map transformation. They provide effective information interaction to preserve the irrelevant regions unchanged. Without using skip connections between the encoder and decoder, furthermore, we propose the high-frequency compensation module (HFCM) to improve image quality. The HFCM tries to collect potentially loss information from input images and each down-sampling layers of the encoder, and then re-inject them into subsequent layers to alleviate the information loss. Ablation analysis show the effectiveness of proposed CTI and HFCM. Extensive qualitative and quantitative experiments on CelebA-HQ demonstrate that the proposed method outperforms state-of-the-art methods both in attribute editing accuracy and image quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
charlotte发布了新的文献求助10
3秒前
rio完成签到 ,获得积分10
4秒前
斯文败类应助cookie486采纳,获得10
5秒前
lamp完成签到 ,获得积分10
8秒前
彭于晏应助王博士采纳,获得10
9秒前
科研通AI5应助鸡爪采纳,获得10
9秒前
易槐完成签到,获得积分10
11秒前
羁绊完成签到,获得积分10
12秒前
12秒前
村上春树的摩的完成签到 ,获得积分10
13秒前
13秒前
charlotte完成签到,获得积分20
13秒前
季风气候完成签到 ,获得积分10
14秒前
17秒前
平淡纸飞机完成签到 ,获得积分10
17秒前
cookie486发布了新的文献求助10
17秒前
ZhaoCun发布了新的文献求助20
18秒前
renzhiqiang发布了新的文献求助10
20秒前
22秒前
轨道交通振动与噪声小白完成签到,获得积分10
23秒前
qunqingqing完成签到,获得积分10
24秒前
香蕉觅云应助kingripple采纳,获得10
25秒前
小杨完成签到 ,获得积分10
25秒前
renzhiqiang完成签到,获得积分10
28秒前
29秒前
BADGUY关注了科研通微信公众号
29秒前
29秒前
30秒前
30秒前
包容香菇发布了新的文献求助10
31秒前
科研通AI5应助粗犷的山水采纳,获得10
31秒前
fuxi发布了新的文献求助10
33秒前
风和日丽发布了新的文献求助10
34秒前
lulu发布了新的文献求助10
34秒前
烟花应助zhangxinxin采纳,获得10
35秒前
椰子在长江送礼物应助MLC采纳,获得10
35秒前
暮雪完成签到,获得积分10
35秒前
王博士发布了新的文献求助10
36秒前
Fred发布了新的文献求助10
36秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799070
求助须知:如何正确求助?哪些是违规求助? 3344776
关于积分的说明 10321432
捐赠科研通 3061226
什么是DOI,文献DOI怎么找? 1680094
邀请新用户注册赠送积分活动 806899
科研通“疑难数据库(出版商)”最低求助积分说明 763445