亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

IFCRL: Interval-Intent Fuzzy Concept Re-Cognition Learning Model

计算机科学 认知 区间(图论) 模糊逻辑 模糊集 人工智能 数学 理论计算机科学 心理学 组合数学 神经科学
作者
Yi Ding,Weihua Xu,Weiping Ding,Yuhua Qian
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (6): 3581-3593 被引量:17
标识
DOI:10.1109/tfuzz.2024.3376569
摘要

The fuzzy concept serves as a crucial tool for describing phenomena and constitutes the fundamental unit of human cognition. Fuzzy concepts are characterized by their extent and intent, with the latter being comprised of continuous membership degrees. Given that human cognition often progresses from vagueness to precision, it is imperative that the form of intent not be confined to a singular continuous value; rather, an interval possesses superior flexibility in this regard. Initial cognitive processes lack comprehensiveness in acquiring knowledge, necessitating subsequent cognitions to more accurately delineate the intended scope of a concept. Motivated by this insight, we proposed an interval-intent fuzzy concept re-cognition learning model (IFCRL). Firstly, this model transforms fuzzy concept intent from a single continuous value into an interval-based representation which describes the range of attribute values for all objects within the given interval. Secondly, in order to simulate secondary cognitive processes akin to those exhibited by humans towards phenomena, we present a concept re-cognition learning method capable of effectively scaling intervals within reasonable bounds. Thirdly, aiming to overcome cognitive barriers and emulate imaginative processes observed in human brains, we introduce a concept clustering approach based on intent similarity which significantly reduces concept complexity while enhancing cognitive efficiency. Finally, we evaluate our classification performance using 12 datasets and experimental results demonstrate that IFCRL outperforms 14 other classification algorithms both feasibly and effectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有米爱吃又桂卷完成签到,获得积分10
10秒前
Ava应助长情的乐珍采纳,获得10
24秒前
38秒前
饼干完成签到,获得积分10
40秒前
饼干发布了新的文献求助10
46秒前
WIS完成签到,获得积分10
1分钟前
黑摄会阿Fay完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
金沐栋完成签到,获得积分20
1分钟前
难过的踏歌完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
葡萄酸奶冻完成签到,获得积分10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
爆米花应助葡萄酸奶冻采纳,获得10
2分钟前
Criminology34应助Wei采纳,获得10
2分钟前
2分钟前
3分钟前
Wei发布了新的文献求助10
3分钟前
李桂芳完成签到,获得积分10
3分钟前
wzgkeyantong完成签到,获得积分10
3分钟前
andrele发布了新的文献求助10
3分钟前
隐形不凡完成签到,获得积分10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
TEMPO发布了新的文献求助10
4分钟前
莫愁完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
爆米花应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714807
求助须知:如何正确求助?哪些是违规求助? 5226908
关于积分的说明 15273697
捐赠科研通 4866025
什么是DOI,文献DOI怎么找? 2612579
邀请新用户注册赠送积分活动 1562738
关于科研通互助平台的介绍 1520016