Small-object detection based on YOLOv5 in autonomous driving systems

计算机科学 目标检测 人工智能 计算机视觉 透视图(图形) 任务(项目管理) 对象(语法) 探测器 领域(数学) 失真(音乐) 深度学习 多样性(控制论) 实时计算 模式识别(心理学) 电信 经济 管理 放大器 纯数学 数学 带宽(计算) 计算机网络
作者
Bharat Mahaur,K. K. Mishra
出处
期刊:Pattern Recognition Letters [Elsevier BV]
卷期号:168: 115-122 被引量:122
标识
DOI:10.1016/j.patrec.2023.03.009
摘要

With the rapid advancements in the field of autonomous driving, the need for faster and more accurate object detection frameworks has become a necessity. Many recent deep learning-based object detectors have shown compelling performance for the detection of large objects in a variety of real-time driving applications. However, the detection of small objects such as traffic signs and traffic lights is a challenging task owing to the complex nature of such objects. Additionally, the complexity present in a few images due to the existence of foreground/background imbalance and perspective distortion caused by adverse weather and low-lighting conditions further makes it difficult to detect small objects accurately. In this letter, we investigate how an existing object detector can be adjusted to address specific tasks and how these modifications can impact the detection of small objects. To achieve this, we explore and introduce architectural changes to the popular YOLOv5 model to improve its performance in the detection of small objects without sacrificing the detection accuracy of large objects, particularly in autonomous driving. We will show that our modifications barely increase the computational complexity but significantly improve the detection accuracy and speed. Compared to the conventional YOLOv5, the proposed iS-YOLOv5 model increases the mean Average Precision (mAP) by 3.35% on the BDD100K dataset. Nevertheless, our proposed model improves the detection speed by 2.57 frames per second (FPS) compared to the YOLOv5 model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助aaaa采纳,获得10
1秒前
尹妮妮完成签到,获得积分10
3秒前
DrZheng发布了新的文献求助10
5秒前
6秒前
8秒前
独行者完成签到,获得积分10
8秒前
8秒前
10秒前
Amy完成签到,获得积分10
11秒前
12秒前
aaaa发布了新的文献求助10
12秒前
虾米完成签到,获得积分10
12秒前
青椒炒蛋发布了新的文献求助10
13秒前
15秒前
CipherSage应助JMchiefEditor采纳,获得10
15秒前
科研通AI5应助狂野世立采纳,获得10
16秒前
16秒前
16秒前
16秒前
陶12345完成签到,获得积分10
17秒前
18秒前
19秒前
研友_8DAv0L发布了新的文献求助10
19秒前
科研通AI5应助小煜哥采纳,获得30
20秒前
chunyan_li应助聪慧的凝海采纳,获得10
20秒前
陶12345发布了新的文献求助10
20秒前
Steven发布了新的文献求助30
21秒前
天天完成签到,获得积分10
21秒前
笨笨芯发布了新的文献求助50
23秒前
23秒前
多情道之完成签到 ,获得积分10
25秒前
aaaa完成签到,获得积分20
26秒前
小二郎应助研友_8DAv0L采纳,获得10
26秒前
27秒前
科研通AI5应助狂野世立采纳,获得10
27秒前
28秒前
29秒前
29秒前
紫薯球完成签到,获得积分10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783103
求助须知:如何正确求助?哪些是违规求助? 3328427
关于积分的说明 10236544
捐赠科研通 3043550
什么是DOI,文献DOI怎么找? 1670558
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119