DSDNet: Toward single image deraining with self-paced curricular dual stimulations

计算机科学 条纹 特征(语言学) 管道(软件) 人工智能 图像(数学) 任务(项目管理) 过程(计算) 光学(聚焦) 对偶(语法数字) 深度学习 雨雪交融 模式识别(心理学) 计算机视觉 气象学 地质学 地理 艺术 文学类 哲学 语言学 矿物学 物理 管理 光学 经济 程序设计语言 操作系统
作者
Yong Du,Junjie Deng,Yulong Zheng,Junyu Dong,Shengfeng He
出处
期刊:Computer Vision and Image Understanding [Elsevier BV]
卷期号:230: 103657-103657 被引量:9
标识
DOI:10.1016/j.cviu.2023.103657
摘要

A crucial challenge regarding the single image deraining task is to completely remove rain streaks while still preserving explicit image details. Due to the inherent overlapping between rain streaks and background scenes, the texture details could be inevitably lost when clearing rain away from the degraded image, making the two purposes contradictory. Existing deep learning based approaches endeavor to resolve the two issues successively in a cascaded framework or to treat them as independent tasks in a parallel structure. However, none of the models explores a proper interaction between rain distributions and hidden feature responses, which intuitively would provide more clues to facilitate the procedures of rain streak removal as well as detail restoration. In this paper, we investigate the impact of rain streak detection for single image deraining and propose a novel deep network with dual stimulations, namely, DSDNet. The proposed DSDNet utilizes a dual-stream pipeline to separately estimate rain streaks and a loss of details, and more importantly, an additional mask that indicates both location and intensity of rains is jointly predicted. In particular, the rain mask is involved in a tailored stimulation strategy that is deployed into each stream of the proposed model, serving as guidance for allowing the network to focus on rain removal and detail recovery in rain regions rather than non-rain areas. Moreover, we incorporate a self-paced semi-curriculum learning design to alleviate the learning ambiguity brought by the prediction of the rain mask and thus accelerate the training process. Extensive experiments demonstrate the proposed method outperforms the state-of-the-art methods on several benchmarks, including in both synthetic and real-world scenarios. The effectiveness of the proposed method is also validated via joint single image deraining, detection, and segmentation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩钰小宝完成签到 ,获得积分10
刚刚
1秒前
wangke发布了新的文献求助10
3秒前
4秒前
领导范儿应助科研通管家采纳,获得10
7秒前
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
闵SUGA发布了新的文献求助10
8秒前
whilers发布了新的文献求助10
10秒前
疯狂的黑米关注了科研通微信公众号
10秒前
11秒前
友好云朵完成签到,获得积分20
12秒前
情怀应助Drunkard采纳,获得10
12秒前
orixero应助冉小维采纳,获得10
15秒前
脑壳疼完成签到,获得积分10
16秒前
zhaoqing完成签到,获得积分10
16秒前
坤坤发布了新的文献求助10
17秒前
简单的冬瓜完成签到,获得积分10
19秒前
21秒前
21秒前
大个应助进步采纳,获得10
24秒前
semiaa完成签到,获得积分10
24秒前
Sun发布了新的文献求助10
25秒前
25秒前
26秒前
orixero应助meng采纳,获得10
27秒前
冉小维发布了新的文献求助10
27秒前
杨冰发布了新的文献求助10
28秒前
dada完成签到 ,获得积分10
31秒前
WX完成签到 ,获得积分10
32秒前
闵SUGA完成签到,获得积分10
32秒前
暖阳发布了新的文献求助10
32秒前
左岸发布了新的文献求助10
32秒前
33秒前
Caliho完成签到,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780235
求助须知:如何正确求助?哪些是违规求助? 3325533
关于积分的说明 10223422
捐赠科研通 3040695
什么是DOI,文献DOI怎么找? 1668972
邀请新用户注册赠送积分活动 798936
科研通“疑难数据库(出版商)”最低求助积分说明 758634