Machine learning: Next promising trend for microplastics study

微塑料 可解释性 鉴定(生物学) 计算机科学 机器学习 人工智能 生化工程 数据挖掘 工程类 生态学 生物
作者
Jiming Su,Fupeng Zhang,Chuanxiu Yu,Yingshuang Zhang,Jianchao Wang,Chongqing Wang,Hui Wang,Hongru Jiang
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:344: 118756-118756 被引量:30
标识
DOI:10.1016/j.jenvman.2023.118756
摘要

Microplastics (MPs), as an emerging pollutant, pose a significant threat to humans and ecosystems. However, traditional MPs characterization methods are limited by sample requirements and characterization time. Machine Learning (ML) has emerged as a vital technology for analyzing MPs pollution due to its accuracy, broad application, and powerful feature extraction. Nevertheless, environmental scientists require threshold knowledge before using ML, restricting the ML application in MPs research. Furthermore, imbalanced development of ML in MPs research is a pressing concern. In order to achieve a wide ML application in MPs research, in this review, we comprehensively discussed the size and sources of MPs datasets in relevant literature to help environmental scientists deepen their understanding of the construction of MPs datasets. Commonly used ML algorithms are analyzed from the perspective of interpretability and the need for computer facilities. Additionally, methods for improving and evaluating ML model performance, such as dataset pre-processing, model optimization, and model assessment metrics, are discussed. According to datasets and characterization techniques, MPs identification using ML was divided into three categories in this work: spectral identification, image identification, and spectral imaging identification. Finally, other applications of ML in MPs studies, including toxicity analysis, pollutants adsorption, and microbial colonization, are comprehensively discussed, which reveals the great application potential of ML. Based on the discussion above, this review suggests an algorithm selection strategy to assist researchers in selecting the most suitable ML algorithm in different situations, improving efficiency and decreasing the costs of trial and error. We believe that this work sheds light on the application of ML in MPs study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助joe_liu采纳,获得10
刚刚
憨憨哈发布了新的文献求助10
2秒前
lu发布了新的文献求助10
2秒前
Tyranny完成签到 ,获得积分10
2秒前
ding应助小巧大山采纳,获得30
3秒前
淡然的熊猫应助charry采纳,获得10
4秒前
shaodan发布了新的文献求助10
4秒前
化学发布了新的文献求助10
5秒前
111发布了新的文献求助30
5秒前
7秒前
8秒前
9秒前
10秒前
宇麦达发布了新的文献求助10
10秒前
Puli完成签到,获得积分10
11秒前
二丫完成签到,获得积分10
12秒前
AAAAA完成签到,获得积分10
13秒前
CipherSage应助亭子采纳,获得10
14秒前
爆爆完成签到,获得积分10
14秒前
憨憨哈完成签到,获得积分10
14秒前
脑洞疼应助安详飞鸟采纳,获得10
14秒前
shamrock_2发布了新的文献求助10
14秒前
15秒前
隐形曼青应助yuan采纳,获得10
15秒前
派大星发布了新的文献求助10
15秒前
悠旷完成签到 ,获得积分10
16秒前
chengenyuan发布了新的文献求助10
16秒前
科研助手6应助客厅狂欢采纳,获得10
17秒前
深夜诗人发布了新的文献求助10
18秒前
18秒前
kidult完成签到 ,获得积分10
18秒前
深情安青应助Hohoy采纳,获得10
18秒前
CipherSage应助秋秋采纳,获得10
20秒前
高凯璇完成签到 ,获得积分10
21秒前
科研农农完成签到,获得积分20
21秒前
lu完成签到,获得积分10
21秒前
hjx完成签到 ,获得积分10
21秒前
深夜诗人完成签到,获得积分10
22秒前
22秒前
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793230
求助须知:如何正确求助?哪些是违规求助? 3337971
关于积分的说明 10287780
捐赠科研通 3054528
什么是DOI,文献DOI怎么找? 1675991
邀请新用户注册赠送积分活动 804036
科研通“疑难数据库(出版商)”最低求助积分说明 761715