Multiprocessor task scheduling using multi-objective hybrid genetic Algorithm in Fog–cloud computing

计算机科学 调度(生产过程) 作业车间调度 能源消耗 分布式计算 公平份额计划 多处理 单调速率调度 动态优先级调度 遗传算法 两级调度 多处理器调度 数学优化 地铁列车时刻表 并行计算 工程类 电气工程 机器学习 操作系统 数学
作者
Gaurav Agarwal,Sachi Gupta,Rakesh Ahuja,Atul Kumar
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:272: 110563-110563 被引量:18
标识
DOI:10.1016/j.knosys.2023.110563
摘要

Multiprocessor task scheduling is an operation of processing more than two tasks simultaneously in the system. The Fog–cloud multiprocessor computing structures are the categories of exchanged collateral structures with great demand from its initiation. Like other networking systems, the existing fog–cloud system based on multiprocessor systems faces some challenges. Due to the availability of excess clients and various services, scheduling and energy consumption issues are challenging. The existing problems must be resolved with proper planning to reduce makespan and energy consumption. To obtain this, an optimal scheduling approach is required. The proposed approach presents a novel methodology called Hybrid Genetic Algorithm and Energy Conscious Scheduling for better scheduling tasks over the processors. Here Genetic Algorithm and Energy conscious scheduling model are integrated. When only a Genetic Algorithm is chosen for the task scheduling approach, it becomes computationally expensive. Energy consumption becomes a huge challenge as it does not cope with complexity, making it extremely difficult to schedule appropriate tasks. When choosing the proposed hybrid Genetic algorithm, these issues can be overcome by considering optimal solutions with minimized makespan and consumed energy. A Genetic Algorithm is used to generate three primary chromosomes using priority approaches. The allocated resources are optimized through the Energy Conscious Scheduling model, and the proposed method is implemented using MATLAB. The existing methods, including genetic algorithm, particle swarm optimization, gravitational search algorithm, ant colony optimization and round robin models, are compared with the proposed method, proven comparatively better than existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丰富无色完成签到,获得积分10
刚刚
刚刚
望开心顺利毕业完成签到,获得积分10
刚刚
无限代灵完成签到,获得积分10
刚刚
Zq完成签到,获得积分10
1秒前
自然香岚完成签到,获得积分20
1秒前
幽默的觅山完成签到,获得积分20
1秒前
敏感的凝天完成签到,获得积分10
1秒前
wangdii应助孟芷旭孟芷旭采纳,获得10
3秒前
3秒前
活泼无敌完成签到,获得积分10
3秒前
Coco完成签到 ,获得积分10
3秒前
3秒前
云淡风轻发布了新的文献求助10
4秒前
5秒前
5秒前
罗明明完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
李健的粉丝团团长应助000采纳,获得10
6秒前
可乐兑雪碧完成签到,获得积分10
6秒前
下雨打雷关注了科研通微信公众号
8秒前
LLL发布了新的文献求助10
8秒前
8秒前
大模型应助流星噬月采纳,获得10
8秒前
8秒前
9秒前
李爱国应助时丶倾采纳,获得10
9秒前
涛哥完成签到,获得积分10
10秒前
10秒前
果果发布了新的文献求助10
10秒前
龙龙完成签到,获得积分10
10秒前
生活的狗发布了新的文献求助10
11秒前
柚米完成签到,获得积分10
11秒前
melone完成签到,获得积分10
11秒前
欢喜南琴发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5349030
求助须知:如何正确求助?哪些是违规求助? 4483063
关于积分的说明 13953616
捐赠科研通 4381885
什么是DOI,文献DOI怎么找? 2407617
邀请新用户注册赠送积分活动 1400303
关于科研通互助平台的介绍 1373471