A robust registration method for UAV thermal infrared and visible images taken by dual-cameras

人工智能 兰萨克 单应性 计算机视觉 计算机科学 图像配准 尺度不变特征变换 稳健性(进化) 相似性(几何) 离群值 模式识别(心理学) 数学 图像(数学) 生物化学 统计 化学 投射试验 射影空间 基因
作者
Lingxuan Meng,Ji Zhou,Shaomin Liu,Ziwei Wang,Xiaodong Zhang,Lirong Ding,Li Shen,Shaofei Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:192: 189-214 被引量:33
标识
DOI:10.1016/j.isprsjprs.2022.08.018
摘要

Automatic registration of unmanned aerial vehicle (UAV) thermal infrared and visible (TIR&V) images is fundamental for subsequent applications. However, few studies address this issue due to significant radiation gap, shape gap, and texture gap among TIR&V images. The area-based methods are not able to satisfy the accuracy and robustness of location at the same time, while the image pyramid-based methods are computationally expensive. To alleviate these problems, we proposed a so-called TWMM method for the registration of UAV TIR&V images taken by the camera equipped with both thermal infrared and visible sensors. TWMM is realized by combining Template matching with Weights, Multilevel local max-pooling, and Max index backtracking. TWMM consists of four steps: (1) computing similarity maps of the atomic patches using template matching with weights; (2) building pyramid similarity maps using multilevel local max-pooling; (3) deducing the corresponding points (CPs) from top to bottom using max index backtracking; and (4) eliminating outliers and estimating homography. Among the four steps, step 1 and step 2 are used to compute the similarity maps of patches with different sizes; step 3 and step 4 are used to deduce CPs and estimate homography with multiple similarity maps. TWMM was comprehensively evaluated with 600 UAV image pairs under four different scenes and also compared with current methods (i.e. SIFT, SURF, RIFT, RCB, TFeat, HardNet, RANSAC_Flow, HOPC, and CFOG). These image pairs have multiple features, i.e., different land covers, spatial resolutions, and illumination conditions, etc. Results indicate that TWMM achieves an 86.0% correct CP ratio (RCP) and a 96.0% correct matching rate (CMR) for all test images, which is a 15.1% improvement and 11.6% improvement, respectively, over the best state-of-the-art methods. TWMM also shows better robustness than other methods for weak-light images, achieving a 20.7% improvement in RCP and a 28.1% improvement in CMR. Therefore, TWMM is an effective and robust method for UAV TIR&V image registration and has good ability under different scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助失眠的梦采纳,获得10
刚刚
刚刚
英吉利25发布了新的文献求助10
刚刚
可靠的月饼完成签到,获得积分20
刚刚
刚刚
1秒前
面包完成签到,获得积分10
1秒前
爆米花应助难过的煎饼采纳,获得10
1秒前
淡淡翠曼发布了新的文献求助10
1秒前
nojiaonojiao完成签到,获得积分10
1秒前
lily完成签到,获得积分10
1秒前
2秒前
3秒前
jiongjiongjiong完成签到,获得积分10
3秒前
3秒前
Zj小白发布了新的文献求助30
4秒前
nenoaowu发布了新的文献求助10
4秒前
5秒前
Ker完成签到,获得积分10
5秒前
爱吃大米发布了新的文献求助10
5秒前
5秒前
传奇3应助超帅鸣凤采纳,获得10
5秒前
活力太阳发布了新的文献求助10
5秒前
dida完成签到,获得积分10
6秒前
槐椟完成签到,获得积分10
6秒前
7秒前
蒜皮完成签到,获得积分10
7秒前
7秒前
鞠晓睿完成签到,获得积分10
7秒前
7秒前
8秒前
jingjing完成签到,获得积分10
8秒前
8秒前
8秒前
充电宝应助nenoaowu采纳,获得10
8秒前
研友_LmevmL应助健忘的元冬采纳,获得30
9秒前
遇见胡桃夹子完成签到,获得积分10
9秒前
nasya完成签到,获得积分10
9秒前
9秒前
9秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5446392
求助须知:如何正确求助?哪些是违规求助? 4555440
关于积分的说明 14251682
捐赠科研通 4477908
什么是DOI,文献DOI怎么找? 2453417
邀请新用户注册赠送积分活动 1444174
关于科研通互助平台的介绍 1420200