A robust registration method for UAV thermal infrared and visible images taken by dual-cameras

人工智能 兰萨克 单应性 计算机视觉 计算机科学 图像配准 尺度不变特征变换 稳健性(进化) 相似性(几何) 离群值 模式识别(心理学) 数学 图像(数学) 生物化学 统计 化学 投射试验 射影空间 基因
作者
Lingxuan Meng,Ji Zhou,Shaomin Liu,Ziwei Wang,Xiaodong Zhang,Lirong Ding,Li Shen,Shaofei Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:192: 189-214 被引量:19
标识
DOI:10.1016/j.isprsjprs.2022.08.018
摘要

Automatic registration of unmanned aerial vehicle (UAV) thermal infrared and visible (TIR&V) images is fundamental for subsequent applications. However, few studies address this issue due to significant radiation gap, shape gap, and texture gap among TIR&V images. The area-based methods are not able to satisfy the accuracy and robustness of location at the same time, while the image pyramid-based methods are computationally expensive. To alleviate these problems, we proposed a so-called TWMM method for the registration of UAV TIR&V images taken by the camera equipped with both thermal infrared and visible sensors. TWMM is realized by combining Template matching with Weights, Multilevel local max-pooling, and Max index backtracking. TWMM consists of four steps: (1) computing similarity maps of the atomic patches using template matching with weights; (2) building pyramid similarity maps using multilevel local max-pooling; (3) deducing the corresponding points (CPs) from top to bottom using max index backtracking; and (4) eliminating outliers and estimating homography. Among the four steps, step 1 and step 2 are used to compute the similarity maps of patches with different sizes; step 3 and step 4 are used to deduce CPs and estimate homography with multiple similarity maps. TWMM was comprehensively evaluated with 600 UAV image pairs under four different scenes and also compared with current methods (i.e. SIFT, SURF, RIFT, RCB, TFeat, HardNet, RANSAC_Flow, HOPC, and CFOG). These image pairs have multiple features, i.e., different land covers, spatial resolutions, and illumination conditions, etc. Results indicate that TWMM achieves an 86.0% correct CP ratio (RCP) and a 96.0% correct matching rate (CMR) for all test images, which is a 15.1% improvement and 11.6% improvement, respectively, over the best state-of-the-art methods. TWMM also shows better robustness than other methods for weak-light images, achieving a 20.7% improvement in RCP and a 28.1% improvement in CMR. Therefore, TWMM is an effective and robust method for UAV TIR&V image registration and has good ability under different scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马麻薯完成签到,获得积分10
刚刚
BareBear应助碧蓝可乐采纳,获得10
1秒前
李健应助liuchao采纳,获得10
1秒前
科研通AI2S应助大力元霜采纳,获得10
1秒前
1秒前
xiao柒柒柒完成签到,获得积分10
3秒前
漂亮天真完成签到,获得积分10
4秒前
ww发布了新的文献求助10
4秒前
一二发布了新的文献求助10
4秒前
吉吉国王完成签到,获得积分10
4秒前
星辰大海应助tt采纳,获得10
4秒前
简单山槐完成签到 ,获得积分10
5秒前
大苗完成签到,获得积分10
5秒前
yyyjx发布了新的文献求助10
5秒前
踏实的盼秋完成签到,获得积分10
6秒前
埃特纳氏完成签到 ,获得积分10
6秒前
mechefy完成签到,获得积分10
6秒前
lzh完成签到,获得积分10
6秒前
6秒前
Reina完成签到,获得积分10
7秒前
清风明月完成签到,获得积分10
7秒前
和谐的醉山完成签到,获得积分10
9秒前
缥缈的幻雪完成签到 ,获得积分10
10秒前
筱星完成签到,获得积分10
10秒前
ww完成签到,获得积分10
10秒前
Rachel完成签到 ,获得积分10
11秒前
小C完成签到,获得积分10
11秒前
cistronic完成签到,获得积分10
11秒前
lixy完成签到,获得积分10
11秒前
ah_junlei完成签到,获得积分10
11秒前
Reina发布了新的文献求助10
11秒前
亦可樕完成签到 ,获得积分10
12秒前
12秒前
slim完成签到,获得积分10
13秒前
笨笨藏鸟完成签到,获得积分10
13秒前
失眠芝麻完成签到,获得积分10
13秒前
ljr完成签到 ,获得积分10
14秒前
Yi完成签到,获得积分10
14秒前
14秒前
好运連連完成签到,获得积分10
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4150175
求助须知:如何正确求助?哪些是违规求助? 3686226
关于积分的说明 11643900
捐赠科研通 3379146
什么是DOI,文献DOI怎么找? 1854557
邀请新用户注册赠送积分活动 916641
科研通“疑难数据库(出版商)”最低求助积分说明 830544