RDGT: Enhancing Group Cognitive Diagnosis With Relation-Guided Dual-Side Graph Transformer

计算机科学 认知 变压器 人工智能 图形 关系(数据库) 机器学习 理论计算机科学 心理学 数据挖掘 物理 量子力学 电压 神经科学
作者
Xiaoshan Yu,Chuan Qin,D. Z. Shen,Haiping Ma,Le Zhang,Xingyi Zhang,Hengshu Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (7): 3429-3442 被引量:14
标识
DOI:10.1109/tkde.2024.3352640
摘要

Cognitive diagnosis has been widely recognized as a crucial task in the field of computational education, which is capable of learning the knowledge profiles of students and predicting their future exercise performance. Indeed, considerable research efforts have been made in this direction over the past decades. However, most of the existing studies only focus on individual-level diagnostic modeling, while the group-level cognitive diagnosis still lacks an in-depth exploration, which is more compatible with realistic collaborative learning environments. To this end, in this paper, we propose a R elation-guided D ual-side G raph T ransformer (RDGT) model for achieving effective group-level cognitive diagnosis. Specifically, we first construct the dual-side relation graphs (i.e., student-side and exercise-side) from the group-student-exercise heterogeneous interaction data for explicitly modeling associations between students and exercises, respectively. In particular, the edge weight between two nodes is defined based on the similarity of corresponding student-exercise interactions. Then, we introduce two relation-guided graph transformers to learn the representations of students and exercises by integrating the whole graph information, including both nodes and edge weights. Meanwhile, the inter-group information has been incorporated into the student-side relation graph to further enhance the representations of students. Along this line, we design a cognitive diagnosis module for learning the groups' proficiency in specific knowledge concepts, which includes an attention-based aggregation strategy to obtain the final group representation and a hybrid loss for optimizing the performance prediction of both group and student. Finally, extensive experiments on 5 real-world datasets clearly demonstrate the effectiveness of our model as well as some interesting findings (e.g., the representative groups and potential collaborations among students).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助161319141采纳,获得10
1秒前
cy驳回了mmyhn应助
2秒前
4秒前
一一发布了新的文献求助10
4秒前
包容的小蚂蚁完成签到,获得积分10
7秒前
酷波er应助lanmin采纳,获得10
8秒前
jor666完成签到 ,获得积分10
9秒前
聪慧青发布了新的文献求助10
9秒前
9秒前
充电宝应助sevenseven采纳,获得10
10秒前
11秒前
weiliu完成签到,获得积分20
12秒前
钢镚大王完成签到,获得积分20
12秒前
ZHANG_Kun完成签到 ,获得积分10
13秒前
14秒前
大理学子完成签到,获得积分10
14秒前
丁鹏笑完成签到 ,获得积分0
14秒前
nuo发布了新的文献求助10
16秒前
xiaoxiaojiang完成签到 ,获得积分10
16秒前
Rabbit发布了新的文献求助10
17秒前
觉皇完成签到,获得积分10
17秒前
cc完成签到,获得积分10
18秒前
19秒前
ding应助阿七采纳,获得10
20秒前
20秒前
sevenseven发布了新的文献求助10
22秒前
苦力完成签到 ,获得积分10
23秒前
黄林关注了科研通微信公众号
23秒前
合适冰棍应助中级奥术师采纳,获得10
24秒前
科研通AI5应助生动亦瑶采纳,获得10
24秒前
26秒前
科研通AI5应助jackten采纳,获得30
26秒前
bkagyin应助bacteria采纳,获得10
28秒前
29秒前
30秒前
英俊的铭应助陈研生采纳,获得10
31秒前
wodurbn发布了新的文献求助10
31秒前
32秒前
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4727543
求助须知:如何正确求助?哪些是违规求助? 4084164
关于积分的说明 12631753
捐赠科研通 3790854
什么是DOI,文献DOI怎么找? 2093472
邀请新用户注册赠送积分活动 1119306
科研通“疑难数据库(出版商)”最低求助积分说明 995490