RDGT: Enhancing Group Cognitive Diagnosis With Relation-Guided Dual-Side Graph Transformer

计算机科学 认知 变压器 人工智能 图形 关系(数据库) 机器学习 理论计算机科学 心理学 数据挖掘 物理 量子力学 电压 神经科学
作者
Xiaoshan Yu,Chuan Qin,Dazhong Shen,Haiping Ma,Le Zhang,Xingyi Zhang,Hengshu Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (7): 3429-3442 被引量:17
标识
DOI:10.1109/tkde.2024.3352640
摘要

Cognitive diagnosis has been widely recognized as a crucial task in the field of computational education, which is capable of learning the knowledge profiles of students and predicting their future exercise performance. Indeed, considerable research efforts have been made in this direction over the past decades. However, most of the existing studies only focus on individual-level diagnostic modeling, while the group-level cognitive diagnosis still lacks an in-depth exploration, which is more compatible with realistic collaborative learning environments. To this end, in this paper, we propose a <bold>R</bold>elation-guided <bold>D</bold>ual-side <bold>G</bold>raph <bold>T</bold>ransformer (RDGT) model for achieving effective group-level cognitive diagnosis. Specifically, we first construct the dual-side relation graphs (i.e., student-side and exercise-side) from the group-student-exercise heterogeneous interaction data for explicitly modeling associations between students and exercises, respectively. In particular, the edge weight between two nodes is defined based on the similarity of corresponding student-exercise interactions. Then, we introduce two relation-guided graph transformers to learn the representations of students and exercises by integrating the whole graph information, including both nodes and edge weights. Meanwhile, the inter-group information has been incorporated into the student-side relation graph to further enhance the representations of students. Along this line, we design a cognitive diagnosis module for learning the groups&#x0027; proficiency in specific knowledge concepts, which includes an attention-based aggregation strategy to obtain the final group representation and a hybrid loss for optimizing the performance prediction of both group and student. Finally, extensive experiments on 5 real-world datasets clearly demonstrate the effectiveness of our model as well as some interesting findings (e.g., the representative groups and potential collaborations among students). IEEE
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴的欣欣欣完成签到,获得积分10
1秒前
追风发布了新的文献求助10
1秒前
天天快乐应助KKK采纳,获得10
1秒前
共享精神应助dxannie采纳,获得10
1秒前
2秒前
2秒前
2秒前
尔尔发布了新的文献求助10
3秒前
kk发布了新的文献求助10
3秒前
123发布了新的文献求助30
4秒前
4秒前
FashionBoy应助开朗的亦竹采纳,获得10
5秒前
hhhhxxxx完成签到,获得积分10
6秒前
6秒前
6秒前
环游世界发布了新的文献求助10
7秒前
嗯对发布了新的文献求助10
7秒前
wanci应助兴奋芷采纳,获得10
8秒前
8秒前
HHW完成签到 ,获得积分10
8秒前
9秒前
10秒前
JY完成签到,获得积分10
10秒前
小文子发布了新的文献求助10
11秒前
kalisu24完成签到,获得积分10
11秒前
哭泣的雪巧完成签到,获得积分10
11秒前
舒服的鱼完成签到,获得积分10
12秒前
12秒前
Xx发布了新的文献求助10
12秒前
科研通AI6应助张土豆采纳,获得10
12秒前
Lucas应助嗯对采纳,获得10
13秒前
xiaozhang完成签到 ,获得积分10
14秒前
14秒前
科研通AI6应助科研狗采纳,获得10
15秒前
dd关闭了dd文献求助
15秒前
15秒前
zmmm发布了新的文献求助10
15秒前
搜集达人应助WQ采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
kk完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532310
求助须知:如何正确求助?哪些是违规求助? 4621065
关于积分的说明 14576628
捐赠科研通 4560938
什么是DOI,文献DOI怎么找? 2499025
邀请新用户注册赠送积分活动 1479001
关于科研通互助平台的介绍 1450265