MPEDA-Net: A lightweight brain tumor segmentation network using multi-perspective extraction and dense attention

透视图(图形) 计算机科学 掷骰子 分割 编码(集合论) 人工智能 特征(语言学) 特征提取 肿瘤消融 模式识别(心理学) 烧蚀 数学 几何学 语言学 哲学 集合(抽象数据类型) 工程类 程序设计语言 航空航天工程
作者
Hao Luo,Dongmei Zhou,Yongjian Cheng,Siqi Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:91: 106054-106054 被引量:8
标识
DOI:10.1016/j.bspc.2024.106054
摘要

Malignant brain tumors are highly deadly, necessitating the quickly precise segmentation of tumor regions. Previously, clinicians manually classified brain tumor regions utilizing magnetic resonance imaging (MRI). A new trend is the use of computer vision processing to assist clinicians in clinical analysis. Even though numerous recent methodologies based on CNN have been presented, there remains a lack of high performance when evaluating regions in MRI images. Furthermore, there is still a possibility for development in terms of parameter number and computational complexity. To collect feature information and improve the relevance of contextual feature extraction, a multi-perspective extraction (MPE) module is proposed. MPE consists of three different convolutional kernels and special operations. In addition, a dense attention (DA) module is used to provide each point with an appropriate level of attention while fusing features. The effectiveness of these two modules has been proved through ablation experiments. The proposed MPEDA-Net achieves dice of 82.52%, 93.07%, and 87.67% on the R-BraTS2021 (reconstructed-BraTS2021) in the ET, WT, and TC respectively. In addition, the BraTS2018 and BraTS2019 experiments illustrate that the dice of ET, WT, and TC reach 82.44%, 91.38%, 88.27%, and 83.73%, 91.87%, 88.71%, respectively. The more effective segmentation performance shows that MPEDA-Net can significantly enhance brain tumor segmentation accuracy, exceeding several existing methods. The MPEDA-Net code is already available on GitHub: https://github.com/luohaohaoluo/MPEDANet-pytorch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糯米糍完成签到,获得积分10
刚刚
刚刚
cabbage发布了新的文献求助10
1秒前
1秒前
小Y完成签到 ,获得积分10
1秒前
失眠的惜天完成签到,获得积分10
1秒前
大爪发布了新的文献求助10
2秒前
air发布了新的文献求助10
3秒前
orixero应助3wood4fire小炎采纳,获得10
4秒前
4秒前
YSL发布了新的文献求助10
4秒前
南冥完成签到,获得积分10
5秒前
5秒前
大渣饼完成签到 ,获得积分10
5秒前
adasdad完成签到 ,获得积分10
6秒前
善学以致用应助偷乐采纳,获得10
8秒前
8秒前
小马甲应助清秀的发夹采纳,获得10
8秒前
冷傲雪冥发布了新的文献求助30
8秒前
8秒前
9秒前
咖咖完成签到,获得积分10
9秒前
称心涵柳发布了新的文献求助10
10秒前
科研通AI5应助YSL采纳,获得10
10秒前
OuY发布了新的文献求助10
11秒前
guajiguaji发布了新的文献求助10
11秒前
桐桐应助Tzzl0226采纳,获得30
11秒前
研友_VZG7GZ应助健壮的尔烟采纳,获得10
11秒前
weizheng发布了新的文献求助10
14秒前
14秒前
mortal发布了新的文献求助10
15秒前
冷傲雪冥完成签到,获得积分10
15秒前
16秒前
搜集达人应助hfxy采纳,获得10
16秒前
save发布了新的文献求助20
17秒前
彭于晏应助坚定小熊猫采纳,获得10
18秒前
大模型应助称心涵柳采纳,获得10
18秒前
whl发布了新的文献求助10
20秒前
xxx发布了新的文献求助30
20秒前
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800124
求助须知:如何正确求助?哪些是违规求助? 3345459
关于积分的说明 10324980
捐赠科研通 3061918
什么是DOI,文献DOI怎么找? 1680596
邀请新用户注册赠送积分活动 807139
科研通“疑难数据库(出版商)”最低求助积分说明 763509