What to Do about Missing Values in Time‐Series Cross‐Section Data

插补(统计学) 缺少数据 计算机科学 数据挖掘 时间序列 数据科学 软件 计量经济学 机器学习 数学 程序设计语言
作者
James Honaker,Gary King
出处
期刊:American Journal of Political Science [Wiley]
卷期号:54 (2): 561-581 被引量:913
标识
DOI:10.1111/j.1540-5907.2010.00447.x
摘要

Applications of modern methods for analyzing data with missing values, based primarily on multiple imputation, have in the last half‐decade become common in American politics and political behavior. Scholars in this subset of political science have thus increasingly avoided the biases and inefficiencies caused by ad hoc methods like listwise deletion and best guess imputation. However, researchers in much of comparative politics and international relations, and others with similar data, have been unable to do the same because the best available imputation methods work poorly with the time‐series cross‐section data structures common in these fields. We attempt to rectify this situation with three related developments. First, we build a multiple imputation model that allows smooth time trends, shifts across cross‐sectional units, and correlations over time and space, resulting in far more accurate imputations. Second, we enable analysts to incorporate knowledge from area studies experts via priors on individual missing cell values, rather than on difficult‐to‐interpret model parameters. Third, because these tasks could not be accomplished within existing imputation algorithms, in that they cannot handle as many variables as needed even in the simpler cross‐sectional data for which they were designed, we also develop a new algorithm that substantially expands the range of computationally feasible data types and sizes for which multiple imputation can be used. These developments also make it possible to implement the methods introduced here in freely available open source software that is considerably more reliable than existing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯人发布了新的文献求助10
刚刚
刚刚
小蘑菇应助雯雯要提质粒采纳,获得10
1秒前
lhr完成签到 ,获得积分10
2秒前
ding应助小熊同学采纳,获得10
2秒前
SYLH应助vic303采纳,获得10
2秒前
酷波er应助一只羊采纳,获得10
2秒前
晶莹黎发布了新的文献求助10
3秒前
3秒前
举个栗子完成签到,获得积分10
4秒前
Ldq发布了新的文献求助10
4秒前
123发布了新的文献求助10
4秒前
5秒前
火星上含芙完成签到 ,获得积分10
5秒前
5秒前
8秒前
9秒前
10秒前
钰钰发布了新的文献求助10
10秒前
10秒前
123发布了新的文献求助10
10秒前
11秒前
dodo发布了新的文献求助20
11秒前
晶莹黎完成签到,获得积分10
12秒前
12秒前
囡囝囚团发布了新的文献求助10
14秒前
Cloris发布了新的文献求助10
14秒前
苏打发布了新的文献求助10
14秒前
英姑应助炙热乘云采纳,获得10
15秒前
在水一方应助俏皮新儿采纳,获得10
15秒前
18秒前
上官若男应助雍井采纳,获得10
18秒前
手可摘星辰完成签到,获得积分10
18秒前
丘比特应助陈1992采纳,获得10
19秒前
无心的雪枫完成签到,获得积分20
20秒前
20秒前
20秒前
可爱的函函应助nimeng123采纳,获得10
20秒前
共享精神应助123采纳,获得10
23秒前
23秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802119
求助须知:如何正确求助?哪些是违规求助? 3347873
关于积分的说明 10335457
捐赠科研通 3063893
什么是DOI,文献DOI怎么找? 1682232
邀请新用户注册赠送积分活动 807941
科研通“疑难数据库(出版商)”最低求助积分说明 763973