The social anatomy of AI anxiety: gender, generations, and technological exposure

心理学 验证性因素分析 结构方程建模 判别效度 探索性因素分析 焦虑 可靠性(半导体) 收敛有效性 差异(会计) 临床心理学 解释的变化 心理测量学 经验回避 多元统计 发展心理学 多级模型 有效性 线性判别分析 方差分析 社交焦虑 因子分析 多元分析 人工智能 维数之咒 回归分析 结构效度 多元方差分析 统计 体验式学习 社会心理学 内部一致性
作者
Naciye Güliz Uğur,Faruk Dursun
出处
期刊:Frontiers in Psychiatry [Frontiers Media SA]
卷期号:16
标识
DOI:10.3389/fpsyt.2025.1641546
摘要

Introduction Public anxiety surrounding artificial intelligence (AI) carries significant clinical, educational, and policy implications. However, evidence regarding the multidimensional structure of AI-related anxiety and its demographic and experiential correlates remains fragmented. This study synthesizes validated measures into a coherent framework to examine how psychological and sociodemographic factors shape AI-related anxieties. Method A cross-sectional survey of adults (N = 1,151) assessed nine dimensions of AI-related anxiety --general AI anxiety, technoparanoia, technophobia, AI interaction anxiety, job-replacement anxiety, sociotechnical blindness, cybernetic-revolt fear, technology self-efficacy, and AI learning orientation --adapted from established scales. Dimensionality was evaluated using common-factor exploratory factor analysis (principal axis factoring, Promax rotation; KMO = .89; Bartlett's p < .001), supported by parallel analysis and scree inspection. A 70/30 hold-out confirmatory factor analysis assessed structural validity. Reliability (Cronbach's α, McDonald's ω), composite reliability (CR), and average variance extracted (AVE) were calculated to examine internal consistency and convergent validity, while discriminant validity used the Fornell -Larcker and HTMT criteria. Group differences were tested using t-tests and ANOVA with Holm -Bonferroni correction and effect sizes. Hierarchical regression models controlled for age, gender, marital status, employment, and AI-use status. Results The nine-factor structure was supported (64.17% variance explained). CFA indicated good fit (CFI = .943, TLI = .936, RMSEA = .045 [90% CI .041 -.049], SRMR = .046). All scales demonstrated strong reliability (α, ω ≥ .80), convergent validity (CR ≥ .83; AVE ≥ .51), and discriminant validity. After correction for multiple comparisons, gender differences remained for technoparanoia, AI learning orientation, and AI interaction anxiety (small effects, Cohen's d ≈ .18 -.21). AI users exhibited higher general AI anxiety, technoparanoia, and sociotechnical blindness (d ≈ .17 -.29). Age-group differences were non-significant. Hierarchical regression showed that sociotechnical blindness and technoparanoia were the strongest positive predictors of general AI anxiety, while technology self-efficacy and AI learning orientation were negative predictors. Discussion AI-related anxiety is a reliable and multidimensional construct, driven more by psychological dispositions and technology experience than by demographic characteristics. The findings suggest actionable pathways for mitigating anxiety, including targeted AI literacy initiatives, strengthening self-efficacy, and transparent communication regarding sociotechnical impacts. These interventions may support informed and equitable AI integration across clinical, educational, and policy contexts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小贵梓完成签到,获得积分10
刚刚
1秒前
jjjjjj发布了新的文献求助10
1秒前
皆可发布了新的文献求助30
1秒前
mm发布了新的文献求助10
1秒前
William发布了新的文献求助10
2秒前
2秒前
3秒前
李爱国应助有长进采纳,获得10
3秒前
大个应助Zzz采纳,获得10
4秒前
4秒前
5秒前
5秒前
lingck发布了新的文献求助10
5秒前
某某.发布了新的文献求助10
8秒前
小蘑菇应助meng采纳,获得10
8秒前
西贝完成签到,获得积分20
8秒前
崔同学发布了新的文献求助10
9秒前
臭臭完成签到 ,获得积分10
9秒前
思源应助Ting采纳,获得10
9秒前
10秒前
10秒前
划划水发布了新的文献求助10
11秒前
11秒前
yu5546完成签到,获得积分10
12秒前
天天快乐应助奶酪包采纳,获得10
12秒前
王婧微完成签到,获得积分10
13秒前
北林发布了新的文献求助10
13秒前
周雨发布了新的文献求助10
16秒前
17秒前
小蘑菇应助西贝采纳,获得10
17秒前
李健应助光亮的绿凝采纳,获得10
17秒前
W~舞完成签到,获得积分10
18秒前
18秒前
19秒前
22秒前
MQRR发布了新的文献求助10
24秒前
25秒前
flymove完成签到,获得积分10
25秒前
呦呦又鹿完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360761
求助须知:如何正确求助?哪些是违规求助? 4491279
关于积分的说明 13981825
捐赠科研通 4393949
什么是DOI,文献DOI怎么找? 2413668
邀请新用户注册赠送积分活动 1406502
关于科研通互助平台的介绍 1381004