作者
Qiuju Wang,Yu‐xin Liu,Yuping Liu,Baoguang Wu,Qingying Meng,Jingyang Li,Jiahe Zou,Xin Liu
摘要
This study developed an innovative model integrating straw subsoil deep burial (SD) and mixing plow to mitigate albic soil’s physical and chemical constraints and enhance crop yield. A field experiment with four treatments, including conventional tillage (CT), straw mulching (SM), straw subsoil deep burial (SD), and straw burning (SR), was conducted to assess impacts on soil enzyme activity, nutrient dynamics, crop yield, and soil physical properties. Results showed that SD treatment significantly improved albic soil properties compared to conventional tillage: catalase activity in the albic horizon decreased by 13.51%, reducing peroxide toxicity. In the albic horizon, alkaline hydrolysis nitrogen, total nitrogen, available phosphorus, total phosphorus, available potassium, total potassium, and organic matter increased by 29.98%, 58.70%, 36.86%, 20.46%, 5.00%, 21.70%, and 40.46%, respectively. Correspondingly, maize and soybean yield under SD reached 8686.6 kg/ha and 2245.3 kg/ha, increasing by 15.39% and 19.94% compared to CT, respectively. Additionally, SD treatment improved physical properties of the albic horizon: soil hardness reduced by 43.56%, with enhanced water-holding capacity, permeability coefficient, porosity, and hydraulic conductivity. Its findings not only boost agronomic productivity by improving crop yields but also support environmental sustainability by enhancing soil fertility, which is of great significance for ensuring food security.