Event-Camera Based UAV Autonomous Navigation Via Spiking Reinforcement Learning

作者
Kai Kou,Gang Yang,Wenqi Zhang,Yuan Yao,Xingshe Zhou
出处
期刊:Unmanned Systems [World Scientific]
卷期号:: 1-16
标识
DOI:10.1142/s2301385027500312
摘要

In recent years, reinforcement learning has received significant attention and has been widely applied to UAV autonomous navigation tasks. However, most existing studies assume that UAV operates in static environments, overlooking randomly occurring dynamic obstacles. Such obstacles are often difficult for conventional sensors to detect in a timely manner, which poses a serious threat to flight safety. To address autonomous navigation in dynamic environments, this paper introduces the Event-camera, a novel dynamic vision sensor, to capture environmental information with high dynamic range and microsecond-level temporal resolution. To efficiently process the sparse and asynchronous event stream generated by the Event-camera, we develop spiking reinforcement learning framework based on a spiking neural network, enabling low-latency and high-efficiency control and decision-making. Furthermore, inspired by the advances in biological neural dynamics, we propose a biologically plausible plasticity spiking threshold mechanism, which enables spiking neurons to dynamically adjust their firing thresholds in response to the mean membrane potential and depolarization rate. This mechanism enhances the robustness and adaptability of neural information encoding. Extensive experiments in multiple complex environments within the Airsim simulator demonstrate that the proposed method consistently outperforms baseline methods in dynamic environments across various objective evaluation metrics, achieving higher navigation success rates and flight speeds. Moreover, it maintains competitive performance in previously unknown environments, indicating a certain degree of generalization capability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Alora发布了新的文献求助10
1秒前
浮游应助淡淡的凡霜采纳,获得10
1秒前
wxyshare应助淡淡的凡霜采纳,获得10
1秒前
小鱼儿发布了新的文献求助10
1秒前
墨鱼完成签到,获得积分10
1秒前
1秒前
共享精神应助nwj123654采纳,获得10
2秒前
3秒前
hhh完成签到,获得积分10
3秒前
MUAL发布了新的文献求助10
3秒前
香蕉觅云应助滴滴采纳,获得10
3秒前
4秒前
5秒前
慕寒发布了新的文献求助10
6秒前
可爱小张应助Compro采纳,获得10
8秒前
JamesPei应助不想说晚安采纳,获得10
8秒前
zhonglv7应助zhouyane采纳,获得10
8秒前
万能图书馆应助阔达丹亦采纳,获得10
8秒前
英俊的铭应助靓丽翠琴采纳,获得10
8秒前
曾丸子完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
留胡子的寄瑶完成签到 ,获得积分10
10秒前
Owen应助可爱小张采纳,获得10
10秒前
11秒前
MUAL完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
15秒前
15秒前
静静想静静地静静完成签到,获得积分10
16秒前
搜集达人应助鱼儿采纳,获得10
16秒前
17秒前
wanci应助come采纳,获得10
17秒前
骞骞完成签到,获得积分10
17秒前
ttt发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297641
求助须知:如何正确求助?哪些是违规求助? 4446441
关于积分的说明 13839607
捐赠科研通 4331617
什么是DOI,文献DOI怎么找? 2377788
邀请新用户注册赠送积分活动 1373077
关于科研通互助平台的介绍 1338591