Applying deep learning to real-time UAV-based forest monitoring: Leveraging multi-sensor imagery for improved results

计算机科学 RGB颜色模型 人工智能 深度学习 透视图(图形) 计算机视觉 测距 频道(广播) 目标检测 实时计算 遥感 模式识别(心理学) 电信 地质学
作者
T.R. Marques,Samuel Carreira,Rolando Miragaia,João Ramos,Ántónio Pereira
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:245: 123107-123107 被引量:6
标识
DOI:10.1016/j.eswa.2023.123107
摘要

Rising global fire incidents necessitate effective solutions, with forest surveillance emerging as a crucial strategy. This paper proposes a complete solution using technology that integrates visible and infrared spectrum images through Unmanned Aerial Vehicles (UAVs) for enhanced detection of people and vehicles in forest environments. Unlike existing computer vision models relying on single-sensor imagery, this approach overcomes limitations posed by limited spectrum coverage, particularly addressing challenges in low-light conditions, fog, or smoke. The developed 4-channel model uses both types of images to take advantage of the strengths of each one simultaneously. This article presents the development and implementation of a solution for forest monitoring ranging from the transmission of images captured by a UAV to their analysis with an object detection model without human intervention. This model consists of a new version of the YOLOv5 (You Only Look Once) architecture. After the model analyzes the images, the results can be observed on a web platform on any device, anywhere in the world. For the model training, a dataset with thermal and visible images from the aerial perspective was captured with a UAV. From the development of this proposal, a new 4-channel model was created, presenting a substantial increase in precision and mAP (Mean Average Precision) metrics compared to traditional SOTA (state-of-the-art) models that only make use of red, green, and blue (RGB) images. Allied with the increase in precision, we confirmed the hypothesis that our model would perform better in conditions unfavorable to RGB images, identifying objects in situations with low light and reduced visibility with partial occlusions. With the model’s training using our dataset, we observed a significant increase in the model’s performance for images in the aerial perspective. This study introduces a modular system architecture featuring key modules: multisensor image capture, transmission, processing, analysis, and results presentation. Powered by an innovative object detection deep-learning model, these components collaborate to enable real-time, efficient, and distributed forest monitoring across diverse environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助美好的元珊采纳,获得10
刚刚
天天快乐应助美好的元珊采纳,获得10
刚刚
xu发布了新的文献求助10
2秒前
Noha完成签到,获得积分20
3秒前
4秒前
5秒前
许红祥完成签到,获得积分10
5秒前
无花果应助慈祥的鱼采纳,获得10
6秒前
6秒前
大模型应助顺顺采纳,获得10
6秒前
7秒前
7秒前
深情的大碗完成签到,获得积分10
7秒前
wang发布了新的文献求助10
8秒前
SYLH应助sb采纳,获得10
9秒前
善良的凝荷完成签到,获得积分10
9秒前
冷静妙海完成签到 ,获得积分10
9秒前
1111发布了新的文献求助10
10秒前
ry发布了新的文献求助10
11秒前
11秒前
cp1690完成签到,获得积分10
12秒前
12秒前
斯文败类应助未何采纳,获得10
13秒前
爱撒娇的紫南完成签到 ,获得积分10
13秒前
13秒前
充电宝应助玥越采纳,获得10
13秒前
我是老大应助清爽忆山采纳,获得10
14秒前
GaryW完成签到,获得积分10
14秒前
CAIJING完成签到,获得积分10
14秒前
15秒前
15秒前
慕青应助alaxs采纳,获得10
16秒前
16秒前
GaryW发布了新的文献求助10
17秒前
专注灵凡发布了新的文献求助10
17秒前
11完成签到,获得积分10
18秒前
包容大象发布了新的文献求助10
19秒前
20秒前
Ava应助林药师采纳,获得10
21秒前
CodeCraft应助林药师采纳,获得10
21秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Scientific and Medical Knowledge Production, 1796-1918 Volume II: Humanity 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829755
求助须知:如何正确求助?哪些是违规求助? 3372406
关于积分的说明 10471951
捐赠科研通 3091946
什么是DOI,文献DOI怎么找? 1701575
邀请新用户注册赠送积分活动 818468
科研通“疑难数据库(出版商)”最低求助积分说明 770905