SeqAdver: Automatic Payload Construction and Injection in Sequence-based Android Adversarial Attack

有效载荷(计算) 对抗制 计算机科学 Android(操作系统) Android应用程序 序列(生物学) 操作系统 嵌入式系统 计算机安全 人工智能 网络数据包 生物 遗传学
作者
Fei Zhang,Ruitao Feng,Xiaofei Xie,Xiaohong Li,Lianshuan Shi
标识
DOI:10.1109/icdmw60847.2023.00172
摘要

Machine learning has achieved a great success in the field of Android malware detection. In order to avoid being caught by these ML-based Android malware detection, malware authors are inclined to initiate adversarial sample attacks by tampering with mobile applications. Although machine learning has high capability, it lacks robustness against adversarial attacks. Currently, many of the adversarial attacking tools not only inject dead code into target applications, which can never be executed, but also require the injection of many benign features into a malicious APK. This can be easily noticeable by program analysis techniques. In this paper, we propose SeqAdver, an automatic payload construction and injection tool, which aims to bring the adversarial attack to the next level by injecting a payload that allows execution without breaking the app’s original functionalities. These payloads are obtained from benign APKs at the Smali level and normalized into usable code snippets. The extracted Smali codes are carefully selected by filtering out ‘user-visible’ APIs and Intents. Therefore, payloads are able to be executed without any visible change noticed by the user. Besides, extracted payloads can be injected into different locations of the file based on sequence position or on the launcher class. Experiments were conducted to prove that randomly extracted payloads from benign apps are able to execute without causing any ‘user-visible’ behaviors or crashing the app when running the app in Android emulators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HXH完成签到,获得积分10
刚刚
reece完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
大屁股墩完成签到 ,获得积分10
5秒前
6秒前
7秒前
wenhelin发布了新的文献求助10
8秒前
Ava应助Mark采纳,获得10
9秒前
时尚东蒽发布了新的文献求助10
10秒前
11秒前
quanhua完成签到,获得积分10
11秒前
ZY完成签到 ,获得积分10
12秒前
周老八发布了新的文献求助10
13秒前
wry完成签到,获得积分10
14秒前
14秒前
达瓦里希完成签到 ,获得积分10
14秒前
bk2020113458完成签到,获得积分10
14秒前
p00发布了新的文献求助10
15秒前
刘一安完成签到 ,获得积分10
15秒前
小巧的如冬完成签到,获得积分10
15秒前
卡沙巴完成签到,获得积分10
16秒前
所所应助黑白采纳,获得20
16秒前
NexusExplorer应助zcious采纳,获得10
17秒前
萨尔莫斯发布了新的文献求助10
17秒前
科研助手6应助传统的鹏涛采纳,获得10
18秒前
AAAAA完成签到 ,获得积分10
19秒前
沅沅发布了新的文献求助10
19秒前
脸小呆呆完成签到 ,获得积分10
19秒前
gh发布了新的文献求助20
20秒前
20秒前
21秒前
旅顺口老李完成签到 ,获得积分10
21秒前
hanzhipad应助非而者厚采纳,获得20
24秒前
bian发布了新的文献求助10
26秒前
hjyylab应助时尚东蒽采纳,获得10
26秒前
Eleven应助时尚东蒽采纳,获得10
26秒前
杨杨发布了新的文献求助10
27秒前
西红柿炒鸡蛋应助Kiosta采纳,获得10
27秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843549
求助须知:如何正确求助?哪些是违规求助? 3385850
关于积分的说明 10542709
捐赠科研通 3106659
什么是DOI,文献DOI怎么找? 1711004
邀请新用户注册赠送积分活动 823920
科研通“疑难数据库(出版商)”最低求助积分说明 774380