共晶体系
萃取(化学)
木质素
水溶液
化学
聚对苯二甲酸乙二醇酯
环境修复
傅里叶变换红外光谱
环境友好型
化学工程
材料科学
有机化学
环境化学
污染
工程类
生物
复合材料
生态学
合金
作者
Yuxuan Zhang,Jameson R. Hunter,Ahamed Ullah,Qing Shao,Jian Shi
标识
DOI:10.1016/j.jhazmat.2024.133695
摘要
As a growing concern in aqueous systems, micro- and nano-plastics, especially nanoplastics (NPs), have been widely detected in the environment and organisms, posing a potential threat to ecosystems and human health. Hydrophobic deep eutectic solvents (HDESs) have emerged as environmentally friendly solvents that have shown promise for extracting pollutants from water, either for detection or removal purposes. Herein, we investigated the extraction of polystyrene (PS) and polyethylene terephthalate (PET) NPs from aqueous solution using lignin based HDESs as sustainable solvents. Rapid extraction of both PET and PS NPs was observed with the high extraction efficiency achieved (> 95%). The extraction capacities for PET and PS could reach up to 525.877 mg/mL and 183.520 mg/mL, respectively, by the Thymol-2,6-dimethoxyphenol 1:2 HDES. Moreover, the extraction mechanism was studied using various techniques including Fourier-transform infrared analysis, contact angle measurements, molecular dynamics simulation, kinetics, and isotherm studies. This work lays a foundational basis for the future development of innovative HDES-based technologies in the detection and remediation of NPs as part of the grand challenge of plastic pollution.
科研通智能强力驱动
Strongly Powered by AbleSci AI