Dynamic Object-Aware LiDAR Odometry Aided by Joint Weightings Estimation in Urban Areas

里程计 激光雷达 点云 计算机科学 对象(语法) 人工智能 计算机视觉 点(几何) 目标检测 遥感 模式识别(心理学) 机器人 数学 地理 移动机器人 几何学
作者
Feng Huang,Weisong Wen,Jiachen Zhang,Chaoqun Wang,Li‐Ta Hsu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 3345-3359
标识
DOI:10.1109/tiv.2023.3338141
摘要

Dynamic object detection from point clouds has been widely studied in recent years to achieve accurate and robust LiDAR odometry for autonomous driving. Satisfactory accuracy can be achieved by Dynamic object detection from point clouds has been widely studied in recent years to achieve accurate and robust LiDAR odometry for autonomous driving. Satisfactory accuracy can be achieved by detecting and removing the object points in the urban environment. However, it is still not clear how dynamic objects numerically affect the performance of LiDAR odometry. In addition, the existing solutions tended to directly remove the LiDAR features belonging to the dynamic object, which can lead to the degradation of the geometry constraints of the surrounding features. This paper aims to give answers to these problems by evaluating the effects of dynamic objects as well as reweighting both dynamic objects and static objects. Three factors affecting the performance of LiDAR odometry in highly dynamic scenarios, including the number , geometry distribution , and velocity of the dynamic objects , are first extensively studied using generated scenarios by leveraging real data. Instead of brutely removing the dynamic features, this paper proposes to adaptively assign weightings to the dynamic features. Then both the dynamic and static features are employed to estimate the LiDAR odometry. The effectiveness of the proposed method is verified using UrbanNav and nuScenes datasets that include numerous dynamic and static objects. To benefit the community, the implementation of the dynamic vehicle simulator and the code for the proposed method are both open-sourced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Tia发布了新的文献求助10
4秒前
丙子哥发布了新的文献求助10
5秒前
在水一方应助孙婉莹采纳,获得10
6秒前
8秒前
Ricky发布了新的文献求助10
9秒前
jxcandice完成签到,获得积分10
10秒前
ding应助LikeX采纳,获得10
10秒前
kkrian完成签到,获得积分10
11秒前
小宋应助mini采纳,获得10
11秒前
姜黎发布了新的文献求助10
13秒前
Tia完成签到,获得积分20
14秒前
14秒前
zhenzheng完成签到 ,获得积分10
15秒前
飞儿随缘发布了新的文献求助10
17秒前
bkagyin应助wyx采纳,获得10
18秒前
19秒前
凉月壹贰完成签到,获得积分20
20秒前
NexusExplorer应助xh采纳,获得10
21秒前
INGH完成签到,获得积分10
22秒前
陈帅发布了新的文献求助10
23秒前
25秒前
Beautieat1完成签到,获得积分10
27秒前
28秒前
善学以致用应助Yi采纳,获得10
29秒前
30秒前
陈帅完成签到,获得积分10
31秒前
口口发布了新的文献求助10
31秒前
xh发布了新的文献求助10
32秒前
Dr.Wei完成签到,获得积分10
34秒前
新威宝贝发布了新的文献求助10
35秒前
我是老大应助Tia采纳,获得10
35秒前
INGH发布了新的文献求助10
35秒前
38秒前
39秒前
Shelby发布了新的文献求助10
42秒前
正直的冰萍完成签到,获得积分20
43秒前
44秒前
李瑾完成签到,获得积分20
44秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
Effects of Receptive Music Therapy Combined with Virtual Reality on Prevalent Symptoms in Patients with Advanced Cancer 282
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811277
求助须知:如何正确求助?哪些是违规求助? 3355696
关于积分的说明 10377245
捐赠科研通 3072493
什么是DOI,文献DOI怎么找? 1687627
邀请新用户注册赠送积分活动 811691
科研通“疑难数据库(出版商)”最低求助积分说明 766762