An Improved COVID-19 Classification Model on Chest Radiography by Dual-Ended Multiple Attention Learning

计算机科学 深度学习 学习迁移 人工智能 2019年冠状病毒病(COVID-19) 机器学习 数据挖掘 疾病 传染病(医学专业) 医学 病理
作者
Yongxian Fan,Hao Gong
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 145-156 被引量:3
标识
DOI:10.1109/jbhi.2023.3324333
摘要

As a highly contagious disease, COVID-19 has not only had a great impact on the life, study and work of hundreds of millions of people around the world, but also had a huge impact on the global health care system. Therefore, any technical tool that allows for rapid screening and high-precision diagnosis of COVID-19 infections can be of vital help. In order to reduce the burden on health care system, the computer-aided diagnosis of COVID-19 has become a current research hotspot. X-ray imaging is a common and low-cost tool that can help with the COVID-19 diagnosis. The data used for this study has 15,153 CXR images, containing 10,192 normal lungs, 3,631 COVID-19 positive cases and 1,345 images of viral pneumonia. For this computer-aided task, we propose the dual-ended multiple attention learning model (DMAL). The model incorporates multiple attention learning into both networks, and the two networks are linked using an integration module. Specifically, in both networks, the backbone network is used to extract global features and the branch network captures local area information; the integration module combines multi-stage features; and the attention module containing element, channel and spatial attention prompts the model to focus on multi-scale information relevant to the disease. We evaluate the proposed DMAL network using relevant competitive methods as well as ten advanced deep learning models in the image domain and obtain the best performance with 99.67%, 99.53%, 99.66%, 99.60% and 99.76% in terms of Accuracy, Precision, Sensitivity, F1 Scores and Specificity. The proposed method will help in the rapid screening and high-precision diagnosis of COVID-19, given the general trend of such severe global infections. Our code and model are available in [https://github.com/Graziagh/DMALNet].

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐凤年完成签到,获得积分10
刚刚
努力搞科研完成签到,获得积分10
刚刚
二丙完成签到 ,获得积分10
5秒前
诸葛烤鸭完成签到,获得积分10
30秒前
33秒前
wlqc完成签到,获得积分10
35秒前
racill完成签到 ,获得积分10
50秒前
善良的剑通发布了新的文献求助100
51秒前
时代更迭完成签到 ,获得积分10
55秒前
研友_Z119gZ完成签到 ,获得积分10
59秒前
zhuazhua完成签到 ,获得积分10
59秒前
Servant2023完成签到,获得积分10
1分钟前
漂漂亮亮大番薯完成签到,获得积分10
1分钟前
DraGon完成签到 ,获得积分10
1分钟前
木木杨完成签到,获得积分10
1分钟前
1分钟前
蒲蒲完成签到 ,获得积分10
1分钟前
缥缈的闭月完成签到,获得积分10
1分钟前
swan完成签到 ,获得积分10
1分钟前
wangsai0532完成签到,获得积分10
1分钟前
沉静的清涟完成签到,获得积分10
1分钟前
踢球的孩子完成签到 ,获得积分10
1分钟前
往返完成签到,获得积分10
1分钟前
yuancw完成签到 ,获得积分10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
rad1413完成签到 ,获得积分10
1分钟前
田野的小家庭完成签到 ,获得积分10
1分钟前
baoxiaozhai完成签到 ,获得积分10
1分钟前
baoxiaozhai完成签到 ,获得积分10
1分钟前
baoxiaozhai完成签到 ,获得积分10
1分钟前
1分钟前
深情安青应助菜狗一只啊采纳,获得10
2分钟前
cqnusq发布了新的文献求助10
2分钟前
平平平平完成签到 ,获得积分10
2分钟前
2分钟前
怡然帅完成签到 ,获得积分10
2分钟前
雪流星完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
中华人民共和国出版史料(1954)第6卷 1000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845620
求助须知:如何正确求助?哪些是违规求助? 3387857
关于积分的说明 10550711
捐赠科研通 3108463
什么是DOI,文献DOI怎么找? 1712844
邀请新用户注册赠送积分活动 824508
科研通“疑难数据库(出版商)”最低求助积分说明 774877